
A Linguistic Query Language
On Top Of A Column-Oriented

Main-Memory Database

Diplomarbeit

zur Erlangung des akademischen Grades
Diplominformatiker

Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät II

Institut für Informatik

eingereicht von: Viktor Rosenfeld
geboren am: 24. Februar 1980
in: Berlin

Gutachter: Prof. Dr. Ulf Leser
Dr. Stefan Manegold

eingereicht am:

Statement of authorship

I declare that I completed this thesis on my own and that information which has been directly or indirectly
taken from other sources has been noted as such. Neither this nor a similar work has been presented to
an examination committee.

Berlin, September 4, 2012 .

2

Contents

1 Introduction 8
1.1 Corpora as resources for linguistic study . 8
1.2 Annis – A multi-layer corpus architecture . 11
1.3 Main-memory and column-oriented database systems . 12
1.4 Structure of this work . 13

2 The Annis corpus system 14
2.1 System architecture . 14
2.2 Data model . 14

2.2.1 The annotation graph . 15
2.2.2 The corpus hierarchy . 16

2.3 The Annis query language . 17
2.3.1 Query functions . 17
2.3.2 Search terms . 18
2.3.3 Unary linguistic constraints . 18
2.3.4 Binary linguistic constraints . 18
2.3.5 Document meta data . 19

3 Implementation of Annis on a relational database system 21
3.1 Storing the Annis model in a relational database . 21

3.1.1 The pre/post-order scheme . 21
3.1.2 Separation of connected components by edge type 22
3.1.3 Merging of dominance hierarchies . 22
3.1.4 Redundancy in the pre/post-order scheme . 23
3.1.5 Database schema . 24

3.2 Computing the solutions to an Annis query . 25
3.2.1 Tables required for the evaluation of search terms 25
3.2.2 Annis queries containing OR . 26

3.3 Implementation of select Annis language features . 26
3.3.1 Implementation of search terms . 27
3.3.2 Implementation of coverage operators . 27
3.3.3 Implementation of precedence operators . 27
3.3.4 Implementation of dominance and pointing relation operators 28
3.3.5 Implementation of the common ancestor operator 28
3.3.6 The COUNT query function . 29
3.3.7 Regular expression searches . 29
3.3.8 Corpus selection . 30

3.4 Current implementation on top of PostgreSQL . 30

4 Related Work 34
4.1 Requirements for a modern linguistic query language . 34
4.2 XML-based query languages . 35
4.3 Dedicated tree query languages . 36
4.4 Multi-layer query languages and corpus systems . 39
4.5 Graphical query languages . 39
4.6 Feature comparison . 40

5 Experimental setup 42
5.1 The TIGER Treebank . 42
5.2 Test queries for the TIGER Treebank . 42

5.2.1 Test query groups . 44
5.2.2 Invalid test queries . 46

3

5.3 Test systems . 47
5.4 MonetDB configuration . 48
5.5 PostgreSQL configuration . 48
5.6 Measurement procedure . 48

6 Port of Annis to MonetDB 50
6.1 Initial port of Annis to MonetDB . 50

6.1.1 Regular expression pattern matching . 50
6.1.2 Evaluation of boolean attributes . 50
6.1.3 Reserved keywords as attribute names . 50

6.2 Query execution plans . 51
6.2.1 Computation of query solutions in a nested subquery 51
6.2.2 Computation of query solutions in a common table expression 52
6.2.3 Performance of different query plans . 54

6.3 Regular expression searches . 62
6.3.1 Implementation of regular expression searches . 63
6.3.2 Minimizing regular expression match loop iterations 65
6.3.3 BAT-aware regular expression matching . 66
6.3.4 Performance comparison of regular expression searches 67

6.4 Binary string searches . 68
6.5 Deduplication of query solutions . 70

6.5.1 Annis queries requiring explicit deduplication of query solutions 71
6.5.2 Query performance without explicit deduplication 71

6.6 Influence of optimization strategies . 73
6.7 Comparison with PostgreSQL . 76

6.7.1 Disk space consumption . 76
6.7.2 Individual query performance . 77
6.7.3 Performance on a random workload . 77

7 Conclusion 80

A Additional Annis features 83
A.1 The ANNOTATE query function . 83
A.2 The MATRIX query function . 85
A.3 Corpus selection and metadata . 85
A.4 Database administration . 87

B Test data 88
B.1 Query groups . 88
B.2 Regular expressions . 95
B.3 Sorted tables . 96

References 98

4

List of Tables

1 Unary linguistic constraints in AQL. 19
2 Binary linguistic constraints in AQL. 20
3 Evaluation time of some Annis queries on the TIGER Treebank. 30
4 Disk usage of the TIGER Treebank in PostgreSQL. 33
5 Feature comparison of linguistic query languages. 41
6 Number of distinct values for each node and edge annotation layer in the TIGER Treebank. 42
7 Number of values appearing in multiple annotation layers in the TIGER Treebank. 43
8 Number of tuples in each table of the TIGER Treebank in Annis. 43
9 General information about the TIGER Treebank in Annis. 43
10 Test queries grouped by the number of search terms and used linguistic operations. 44
11 Hardware specification of the two test systems. 48
12 Runtime (in seconds) of a simple Annis query using different query execution plans. . . . 51
13 Runtime (in seconds) and data written to disk (in MB) for long-running queries in group E. 61
14 Number of results and runtime (in ms) for three regular expression searches. 65
15 Time spent (in ms) during the evaluation of a regular expression annotation search. . . . 70
16 Runtime (in ms) of queries in group A with and without DISTINCT. 72
17 Runtime (in seconds) of queries in group E with and without DISTINCT. 72
18 Queries improved by the CTE template by more than one second. 74
19 Queries impaired by sorting (ms). 75
20 Disk usage of the TIGER Treebank in PostgreSQL and MonetDB. 76

5

List of Figures

1 Three German sentences consisting of the same constituents in a different word order. . . 9
2 A fragment from the Potsdam Commentary Corpus with annotations. 10
3 Screenshot of Annis. 12
4 User interaction and data flow in Annis. 14
5 Creation of a multi-layer linguistic corpus for Annis. 15
6 Annotation graph modeling a phrase from the PCC corpus and some of its annotations. . 16
7 Annotation graph of a sentence in which the subject follows the verb. 18
8 Assignment of pre/post-order values in a DAG. 21
9 Component separation by edge type. 22
10 Merging of dominance hierarchies. 23
11 Annis database schema. 24
12 Query execution plan for an Annis query evaluated on the source schema. 31
13 Frequency distribution of query runtime depending on statistics. 32
14 Query execution plan for an Annis query evaluated on the materialized schema. 33
15 A syntax tree with a crossing edge caused by a discontinuous phrase. 37
16 A syntax tree from the TIGER Treebank containing a secondary edge. 37
17 A syntax tree of an English sentence with nested prepositional and noun phrases. 38
18 Query execution plan of an Annis query using the nested/FROM template. 53
19 Query execution plan of an Annis query using the CTE template. 53
20 Performance of queries in group A depending on the SQL template. 55
21 Performance of queries in group B depending on the SQL template. 56
22 Query execution plan for query 75 using the nested/WHERE template. 57
23 Performance of queries in group C depending on the SQL template. 58
24 Performance of queries in group D depending on the SQL template. 59
25 Influence of the number of threads on the runtime of query 174. 59
26 Performance of queries in group E depending on the SQL template. 60
27 Query execution plans for query 188 of group E. 61
28 Runtime spikes during consecutive runs of two queries in group E. 61
29 Performance of queries in group F depending on the SQL template. 63
30 Breakdown of the time spent in the regular expression matching loop. 65
31 Runtime of regular expression searches using different optimizations. 67
32 Query performance on a sorted node table. 69
33 Query performance on a sorted node_annotation table. 69
34 Influence of different optimization strategies. 73
35 Performance gain of the CTE template. 74
36 Performance gain of regular expressions searches. 75
37 Performance gained by sorting. 75
38 Distribution of query runtime. 76
39 Comparison of individual queries on MonetDB and PostgreSQL. 78
40 Comparison of a random workload on MonetDB and PostgreSQL by query group. 79
41 Performance of a random workload on MonetDB and PostgreSQL without invalid queries. 79

6

List of Listings

1 Annis query matching sentences in which the subject follows the verb. 17
2 SQL query template to compute the solutions of an Annis query. 26
3 SQL query template for an Annis query with multiple alternatives. 26
4 SQL query template for the COUNT query function. 29
5 An Annis query with two hierarchical annotation layers and a cycle between text spans. . 36
6 SQL template of the COUNT query function using a nested subquery. 52
7 SQL template of the COUNT query function using common table expressions. 54
8 MAL plan generated for a regular expression text search. 64
9 MAL plan generated for an exact text search. 64
10 MAL plan using the BAT-aware version of pcre.match. 66
11 Trace of the MAL program for the Annis query tok. 71
12 SELECT clause for the inner query of the ANNOTATE query function. 83
13 SQL query template for the ANNOTATE query function. 84
14 SQL query template for the ANNOTATE query function on MonetDB. 84
15 ARFF file constructed from the output of the MATRIX query function. 85
16 SQL query template for the MATRIX query function. 86
17 SQL query template to compute the solutions of an Annis query on a set of corpora. . . . 86
18 SQL query template to compute the solutions of an Annis query with meta data. 87
19 JDBC connection properties for MonetDB. 87

7

1 Introduction

Linguists rely on corpora of actual spoken or written language, such as newspaper articles, to study lan-
guage variety. Natural language processing algorithms, e.g., automated part-of-speech tagging or syntax
tree generation, have allowed the costruction of large corpora, containing millions of words, which are fur-
ther enriched with a multitude of data [Lüd11]. The challenge posed by these corpora is to quickly identify
and retrieve examples of a linguistic phenomenon a researcher is interested in. To satisfy this demand,
we have developed Annis, a database and web-based multi-layer corpus system [ZRLC09]. It provides a
simple, yet expressive query language which is translated to SQL and evaluated on PostgreSQL [Pos96].

The current implementation of Annis is able to evaluate complex linguistic queries on multi-layer corpora
containing hundreds of thousands of words at a speed which is suitable for interactive use [Ros11]. This
performance is, to the best of our knowledge, unparalleled by other multi-layer corpus systems. However,
Annis reaches its limits with corpora containing close to a million words. It makes extensive use of
denormalization and indexes which unfortunately results in a very large disk footprint and limits the
extensibility of the language. In order to alleviate these disadvantages, we have developed a prototype
implementation of the Annis query language on top of MonetDB, a column-oriented database system
suited for data-intensive, analytical workloads [BK99].

In this work, we describe the necessary steps to implement Annis on MonetDB, measure the performance
of the port, and compare it with the current implementation on PostgreSQL. Specifically, we want to
evaluate Annis queries on the normalized database schema so as to retain its flexibility. In order to use
a realistic workload in our evaluation, we collect queries from an Annis installation at the linguistics
department of the Humboldt-Universität zu Berlin.

In the remainder of this section, we provide a background on the use of annotated corpora in linguistics
and discuss why it is expedient to implement a linguistic query language on top of a database. We then
give an overview of the specific requirements and history of Annis and discuss why a column-oriented
database is a suitable basis for Annis.

1.1 Corpora as resources for linguistic study

Corpus linguistics is a branch of linguistics that emphasizes the study of actual language use by analyzing
large collections of texts as empirical evidence.1 In particular, corpus linguists are interested in language
variation: What options does a speaker or writer have when expressing themselves and what internal or
external factors influence their choices.

One example is the flexibility a German speaker has with regard to word order. German syntax as
described by the Stellungsfeldermodell [Dra37] (see also [ZHS+97]) uses the position of the finite verb
as a fixed point in the structure of the sentence. In a V2 sentence or Verbzweitsatz, in which the finite
verb appears in the second position, the content of the first position, called the prefield, is underspeci-
fied by syntax. Specifically, the subject is no more privileged by syntactical considerations than other
constituents. Compare this to English grammar which generally conforms to a fixed subject-verb order,
although it is inverted in some circumstances [BJL+99]. This is demonstrated in by the three sentences
in Figure 1. The first sentence is taken from the Potsdam Commentary Corpus [Ste04]. The finite verb
at the second position makes up the left sentence bracket (German: linke Satzklammer, LK). A German
sentence also contains a right sentence bracket (rechte Satzklammer, RK), however in this example it is
empty. The prefield (Vorfeld, VF) of the sentence precedes the left sentence bracket and typically con-
sists of exactly one phrase. Between the left and right sentence brackets lies the middle field (Mittelfeld,
MF). It can contain multiple constituents which are underlined in the example. The next two sentences

1There is a considerable debate among corpus linguists about what exactly is meant by the term corpus linguistics.
In [Tay08], Taylor cites many definitions offered within research of corpus linguistics ranging from a very narrow focus
as a tool or methodology to very broad definitions as a linguistic discipline or paradigm. For an introduction into corpus
linguistics see, e.g., [BCR98].

8

VF LK MF RK
Das forderten sie bei der ersten Zossener Runde am Dienstagabend.
Sie forderten das bei der ersten Zossener Runde am Dienstagabend.

Am Dienstagabend forderten sie das bei der ersten Zossener Runde.

Figure 1: Three German sentences consisting of the same constituents in a different word order.

demonstrate how phrases from the middle field can be moved into the prefield without changing the
meaning of the sentence.

Given that a speaker is relatively free to choose which constituent to put in the prefield, a linguist may
want to ask what purpose is served by this flexibility. To this end he may study which constituents are
possible in the prefield, what their distribution is, and if there is a clear preference for one type [SJ08].
He may want to investigate the role played by the constituents in the prefield with regard to the discourse
structure of the text [Spe08] and if there is a difference between written and spoken language [Spe10]. It
may also be interesting to compare German with a closely related language such as Swedish [BR08] or
a relatively dissimilar language such as Chinese [BZ10] and investigate possible reasons for unidiomatic
language use by non-native speakers. Such an analysis must be based on a large amount of language
in order to limit the influence of a few speakers’ or writers’ idiosyncrasies. Nevertheless, it is typically
impossible to analyze a linguistic variety of a natural language in its entirety. The number of texts
or utterances in a modern language is practically infinite. A corpus linguist therefore has to create a
sample of the linguistic variety he is interested in, i.e., construct a corpus. This sample corpus is then
used as an empirical basis for research. Some quantitative research questions can be answered by only
using the text itself. For example, Rayson et al. analyzed the spoken component of the British National
Corpus [Cro93] in order to find significant deviations in word usage frequency in groups differentiated
by gender, age, and social group [RLH97].

However in most cases, the usefulness of a corpus is greatly enhanced if it is enriched with additional
information derived from the text. If this information is stored within the corpus, it is called an anno-
tation. On a macroscopic level, annotations can contain general information about a text such as the
name, age or gender of the author, when the text was written or published, and what language it is
in. On the other side of the spectrum are positional annotations which describe the smallest units of
the text. Typically, each word is classified according to morphological and lexical criteria. Examples of
positional annotations are the lemma, i.e., the word’s canonical form, and part-of-speech information,
i.e., its syntactic word class. Finally, there are structural annotations which describe the logical struc-
ture of the text. Examples are syntax trees, i.e., the internal structure of individual phrases, dependency
trees, i.e., the semantic arguments of individual words, or co-reference links, i.e., assignments of different
phrases in a text to the same entity in real life. Figure 2 shows a fragment of the Potsdam Commentary
Corpus annotated with multiple positional and structural annotations. Below the text are three rows
of token annotations, the morphological and part-of-speech category as well as the lemma of the token.
Further below are two annotation layers that span multiple tokens. The first contains information about
the cognitive status of the phrase and the second whether a phrase contains new information or refers
to an earlier part of the text. Printed above the text is a syntax tree consisting of black lines in which
nodes are labeled with the syntactic category and edges are labeled with the function of the constituent.
Finally, there are two annotation layers implemented as labeled links: A dependency tree linking verbs
and nouns with their arguments using grey dashed lines and a coreference link connecting two phrases
that refer to the same entity with a green line.

Annotations typically do not add new information to a corpus, but make explicit what is already im-
plicitly included in a text. However, their presence is a requirement for the efficient use of corpora in
many cases. Instead of looking at every sentence in a corpus to find those in which the subject follows
the verb, in a syntactically annotated corpus one can search for that data directly. For an in-depth dis-
cussion of corpora and their use in corpus linguistics, literary computing, and computational linguistic
see [LZ08] and [Lüd11].

In recent years, richly annotated corpora have been constructed which go beyond simple syntactical

9

anaphor

anaphor_antecedent:

NP

NK NK

PP

AC NK

NP

NK MNRNK

S

SB OAHD

S

OA SBHD

cat:

pp pn

sbj

det

obja

det obja sbj

dep:

new new new giv-active giv-active

discourse-new referring referring

Inf-stat:

referentiality:

Die Jugendlichen in Zossen wollen ein Musikcafé . Das forderten sie ...

der jugendliche in Zossen wollen ein Musikcafé . der fordern sie
ART NN APPR NE VVFIN ART NN $. PDS VVFIN PPER

Nom.Pl.* Nom.Pl.* -- Dat.Sg.Neut 3.Pl.Pres.Ind Acc.Sg.Neut Acc.Sg.Neut -- Acc.Sg.Neut 3.Pl.Past.Ind 3.Nom.Pl.*morph:
pos:

lemma:

Figure 2: A fragment from the Potsdam Commentary Corpus with annotations.

annotations and integrate annotations from a wide variety of linguistic areas. Such corpora are called
multi-layer or multi-level corpora. For example, Pustejovsky et al. [PMPP05] merged various comple-
mentary annotations of Wall Street Journal articles from the Penn Treebank [MMS93], namely Prob-
Bank [PGK05] and NomBank [MRM04] which contain predicate argument structures anchored on verbs
and nouns respectively, TimeBank [PIS+05] containing temporal features of propositions and the tempo-
ral relations between propositions, the Penn Discourse Treebank [PDL+08] linking discourse connectives
with the sentences they join, and coreference annotations linking text segments referring to the same
entities [PV98]. The Potsdam Commentary Corpus [Ste04] is a similarly annotated corpus of German
regional newspaper texts and the OntoNotes corpus [WHM+11] contains texts from the Penn Tree-
bank as well as Chinese and Arabic news texts. Falko [LDH+08] and CzeSL [HRŠŠ10] are error-tagged
learner corpora of non-native German and Czech speakers respectively. They are examples of corpora in
which annotations add genuine new information, specifically an interpretation of the speakers intended
meaning.

These corpora are particularly valuable because they allow the study of complex phenomena which
operate on several linguistic levels simultaneously. However, they pose special demands on corpus archi-
tectures, first and foremost the ability to model overlapping and concurrent hierarchical annotations of
the same text. These are also called conflicting annotations because they typically cannot be expressed
in a well-formed nested structure, such as an XML tree. An interesting side effect is the ability to
store competing annotations in one corpus, i.e., multiple annotations that are semantically similar, but
motivated by different theoretical frameworks or annotation guidelines. Multi-layer corpus architectures
also need to be able to integrate the output of established tools in order to support historically available
data and established workflows.

Given the complexity and size of multi-layer corpora it is not feasible to simply browse them. Instead,
users must be able to directly search a corpus for features they are interested in. A corpus query language
must first provide the means to express relationships between linguistic phenomena, e.g., their position
in a syntax tree or with regard to the linear order of a text. A query language for multi-layer corpora
also needs to be able to distinguish and access concurrent hierarchies and other overlapping annotations.
On the one hand, it must be sufficiently expressive in order to enable the user to precisely state the
phenomena they are interested in, otherwise the search will yield many unwanted results. On the other
hand, it must also be accessible to users who may have little or no programming experience. Finally,
it must be able to quickly search large corpora. Corpus data is often stored in XML files. Attempts to
operate directly on these files, using custom data structures or the help of an XML database, have not

10

yielded a satisfactory performance [DGSW04, RSW+09]. We have approached this problem by defining
a domain-specific language that is translated to SQL and evaluated on a relational database management
system, or RDBMS. The efficient evaluation of queries on large datasets has been studied extensively by
the database community [AAB+08]. By using a database as a query processor we can benefit directly
from this work.

1.2 Annis – A multi-layer corpus architecture

Annis2 is a database and web-based multi-layer corpus system developed within the Collaborative Re-
search Center SFB 632 on Information Structure3 in cooperation between the University of Potsdam and
the Humboldt Universität zu Berlin. The underlying assumption of the study of information structure
is that the same information is “packaged” differently, depending on the context and the goal of the
discourse. The SFB brings together researchers from linguistics, psychology, and African studies who
investigate the interaction of information structure with various linguistic aspects, e.g., the choice of
lexical means and the composition of texts, as well as the cognitive processing of information. It uses
empirical data in a wide variety of languages and many different annotation schemes. Consequently,
the SFB requires tools that are able to integrate diverse, possibly conflicting annotations of the same
text, such as the example shown in Figure 2, and to enable researchers to access different annotation
layers simultaneously. Annis is the result of an effort to provide a system meeting these requirements.
Exemplary studies showcasing how to use Annis with multi-layer corpora are [ZRLC09, CRS11], and
[KRZZ11].

A central focus of Annis is the suitable visualization of different annotation schemes. Some of the
possibilities are showcased in the screenshot of Annis shown in Figure 3. The large area on the right
side of the screenshot contains different visualizations of the annotations of a sentence from the Potsdam
Commentary Corpus. At the top, the sentence is displayed along with lemma, part-of-speech, and
morphology annotations underneath each token. The graph below is a dependency tree rooted in the
verb of the sentence. Annotations across multiple tokens are shown in an annotation scheme-specific
grid view in the middle, followed by a second hierarchical annotation, the syntax tree of the sentence.
Finally, the entire text is shown in a discourse view in which coreferential text segments are underlined
with the same color and phrases referring to die Jugendlichen in Zossen are highlighted. Annis also
supports multi-media annotations which can be aligned with individual text spans. The system is fully
Unicode-compliant and supports left-to-right as well as right-to-left languages.

The original version of Annis, now called Annis 1, operated on in-memory data structures which were
generated at startup from XML files containing the available corpora and their annotations. Annis 1 did
not directly support tree visualizations; instead trees were generated with an external tool and stored
as graphical annotations. It soon became apparent that the in-memory architecture of Annis 1 severely
constrained the amount of data the system could process on then current hardware [DGSW04]. Thus, the
next version, Annis 2, was implemented on top of the open source database system PostgreSQL [Ros11].
The system was extended with direct support for the visualization of hierarchical annotations and a
graphical query builder [Hüt08]. Additionally, a formal framework was developed for the conversion of
various linguistic storage formats [ZR10] which is used to load corpus data into Annis.

The main optimization strategy in [Ros11] was to denormalize most of the Annis database schema into
a single facts table and to build multiple, combined and partial B-Tree indexes dedicated to the imple-
mentation of specific language features. This strategy enabled us to evaluate many queries interactively
on modern consumer hardware. However, it also has significant drawbacks. The large number of indexes
greatly increases the space required to store a corpus. Consequently, if the corpus does not fit into main
memory, disk I/O is also increased during query processing. Denormalization also limits the flexibility
of the database schema. Adding more attributes, e.g., to implement a new language feature, increases
the width of the facts table and with it the potential I/O load of every query, even those that do not use
the new feature.

2http://www.sfb632.uni-potsdam.de/d1/annis/
3http://www.sfb632.uni-potsdam.de/

11

http://www.sfb632.uni-potsdam.de/d1/annis/
http://www.sfb632.uni-potsdam.de/

Figure 3: Screenshot of Annis displaying a sentence and its annotations.

1.3 Main-memory and column-oriented database systems

As the size of available main memory increases, it has become possible to keep entire databases, or
at least the hot set of very large databases, resident in main memory [GMS92]. Thus, the overriding
optimization criteria for a traditional RDBMS, the reduction of disk I/O, has become less important
and other optimization criteria have become relevant. Although main memory is randomly accessible,
from the point of view of a modern processor, not all of it is accessible at the same speed. Access to
memory regions that have not yet been loaded into the CPU cache will incur a cache miss penalty during
which the processor effectively stalls if it cannot find work to do in parallel. Indeed, many commercial
RDBMSs spend much of the query execution time on main memory and other resource stalls [ADHW99].
To achieve optimal performance on modern processors, it is necessary to improve the cache behavior of
data structures and query processing algorithms [BMK99]. These differences impact all components of
an RDBMS [MKB09].

Traditional database systems employ an n-ary storage model, or NSM. They store the values of every at-
tribute of an individual tuple together. Using a table-based metaphor for a relation, traditional databases
store individual rows. In contrast, column-oriented database systems, also called column-stores, imple-
ment a decomposed storage model, or DSM. They store the values of a single attribute from every tuple

12

together. A relation with n attributes is vertically partitioned into n binary attribute relations and the
attribute values of a tuple are linked by surrogate keys.

The benefits of the DSM were first described in [CK85]. Queries that only reference some of the attributes
of a database schema can be evaluated faster on the DSM than on the NSM. Because a column-store can
load only the attributes required to evaluate a query, it reduces disk I/O and makes better use of the
buffer cache. This rationale not only applies to the reduction of disk I/O, but also to other parts of the
memory hierarchy. Indeed, a vertically partitioned data structure optimizes CPU cache usage [BMK99].
These theoretical advantages have been realized in a number of data-intensive, OLAP applications,
including Data Mining [BRK98], Data Warehouses [SBÇ+07], and Scientific Computing [INGK07]. In
these fields, column-stores can achieve an advantage over traditional RDBMS by an order of magnitude
or more.

Annis uses the database in a similar way as other OLAP applications. Annis queries often access only
some attributes of the database schema, but need to process many or all of the values of a particular
attribute to obtain a result. A corpus is not modified once it is loaded into Annis, i.e., the database is used
in a read-only fashion. However, Annis does not fit the OLAP model perfectly. Except for simple queries,
Annis joins the central table of the database schema with itself many times over. Furthermore, a fairly
typical query does indeed, for a small number of tuples, access almost every attribute of the database
schema. A column-store is ill-suited for this use case because its performance degrades with the number
of projected attributes. Nevertheless, we think that an implementation of Annis on a column-store can
eliminate the disadvantages of the current implementation on PostgreSQL. Specifically, it should be able
to evaluate Annis queries on the normalized database schema.

In the last decade many column-stores have been developed [ABH09]. We have chosen MonetDB as
the target of the port [BK99]. MonetDB pioneered the research into column-oriented, main-memory
databases in the 1990s and is actively developed and backed by a strong research community. At its
core, MonetDB implements an algebra on binary association tables, or BATs. A BAT stores the values
of an individual relational attribute. BATs are manipulated using the MonetDB Assembly Language, or
MAL. In order to answer a SQL query, it is translated into a MAL program, which is then executed by
the MonetDB kernel.

1.4 Structure of this work

In section 2, we explain the Annis data model and its query language in detail, followed by a description
of the translation process of Annis queries to SQL, and the current implementation on PostgreSQL in
section 3. We discuss other linguistic query languages and compare them with Annis in section 4. In
section 5, we describe the TIGER Treebank, the test queries we use to measure the performance of Annis,
and other aspects of our testing environment. The implementation of Annis on MonetDB is described
and evaluated in section 6. We conclude our work in section 7. In appendix A, we describe Annis features
that we did not port to MonetDB. Appendix B contains performance data of the test queries.

13

2 The Annis corpus system

This section summarizes the current state of Annis. We describe how data is prepared for import into
Annis, explain the data model that is used to store this data, and give an overview of the Annis query
language.

2.1 System architecture

Figure 4 shows an overview of the Annis system architecture. The user interacts with the system primarily
through a web browser and the specialized Annis query language (AQL). Queries can be constructed
with a graphical query builder or entered as text. They are translated by a back-end service into SQL
which is then executed on an RDMBS. The returned data is converted into Annis data structures which
are presented to the user with the help of dedicated visualizers. Alternatively, the data returned by the
Annis service can be exported for further analysis in external tools such as WEKA [Gar95] and R [R11].

Annis itself does not have any facilities to create annotations. Instead, it operates on pre-annotated data
that may have been generated by multiple annotation tools and merged into a unified data structure
before being imported into Annis. This approach allows users to leverage specialized tools which are
purpose-built for the creation of specific annotation schemes. The process is summarized by the diagram
in Figure 5. Primary data is a collection of texts. These texts are annotated with the help of external
tools either automatically or by a user. The output is then transformed by the Salt’N’Pepper [ZR10]
converter framework into a set of relANNIS files before being imported into an RDBMS.

Web Frontend

Visualizers

Graphical
Query Builder

Keyword in
context

Key-value grid

Syntax tree

Dependency
tree

Coreference

Multimedia

AQL

Annis
Service

Annis
RDBMS

SQL

Result setAnnis
data

structures

ExporterExternal
Analysis Tools

AQL

Figure 4: User interaction and data flow in Annis.

2.2 Data model

The Annis corpus system can store many corpora and allows the evaluation of an Annis query on multiple
corpora simultaneously. Corpora are arranged in a corpus hierarchy. The contents of a single corpus is
stored in an annotation graph.

14

Source Files

Manual Tools

Automated
Tools

Salt'N'Pepper
Converter

relANNIS
files

Primary
Data

Annis
RDBMS

TigerXML

EXMARaLDA

TreeTagger

PAULA

...

Figure 5: Creation of a multi-layer linguistic corpus for Annis.

2.2.1 The annotation graph

An annotation graph4 is an ordered directed acyclic graph, or ODAG, which integrates the annotations
across multiple annotation layers of a corpus. The nodes in this graph are text spans, i.e., substrings of a
particular primary text, and the edges encode linguistic relationships between these spans. A corpus can
contain multiple texts simultaneously and a linguistic relationship may connect text spans from different
texts.

Each node has three main properties: the left and right index (inclusive) of the text span in the text and
a reference to that text. Nodes are implicitly nested if a text span is contained within another. However,
text spans may also overlap arbitrarily and it may not be possible to arrange the nodes of the graph in a
tree structure. A subset of the nodes, usually but not necessarily the leaves of the graph, are the tokens
of text. They have two additional properties: the token’s textual content and its position in the text.
A node can be annotated with arbitrary key-value pairs to encode a positional annotation of a token or
a structural annotation of a non-token text span. There can be multiple nodes covering the same text
span, but annotated with different key-value pairs, to model independent annotation layers.

Each edge is typed to distinguish different semantics of the parent-child relationship. Three different
edge types are currently supported:

• Coverage edges group one or more child spans. The child spans do not have to be continuous.
This allows the construction of text spans containing gaps, such as the verb phrase in Figure 15
on page 37.

• Pointing relation edges are used to encode arbitrary, possibly non-hierarchical, relationships be-
tween text spans. For example, they are used to model dependency relationships between verbs or
nouns and their arguments. Note that a pointing relation typically does not imply coverage.

• Dominance edges encode the dominance hierarchy of text spans, i.e., a syntax tree. Note that
dominance typically implies coverage but not vice versa. A dedicated hierarchical dominance edge
type, in addition to the more general pointing relation type, is used to provide dedicated dominance
operators in the Annis query language.

Other linguistic relationships could be modeled using a dedicated edge type if this were to improve the
expressiveness of the query language. In addition to a type, each edge has an optional name to distinguish
different subtypes. For pointing relation edges this name is used to model different kinds of linguistic
relationships. Similarly to nodes, an edge can be annotated with arbitrary key-value pairs. There may be
multiple edges of the same type between the same two nodes, possibly annotated with different key-value
pairs, to model independent annotation layers.

4Note that our usage of the term annotation graph differs from Lai and Bird in [LB04].

15

In the model described above there are three different ways to express a relationship between two text
spans:

• By an explicit relationship in the graph, i.e., the existence of an edge or a path between the spans.

• By a precedence relationship, which compares the position of the left-most and right-most tokens
covered by the spans.

• By a coverage relationship, which compares the left and right text borders of the spans.

These relationships are demonstrated in Figure 6. The graph encodes a phrase and multiple annotation
layers from the Potsdam Commentary Corpus. Solid boxes denote the text spans of the annotation
graph and dotted boxes denote node or edge annotations. At the bottom are four tokens, each with a
pos, morph, and lemma annotation. The numbers in the top-left corners represent the token position in
the text and the numbers in the bottom corners the left and right index of the text spans. Above are
four different annotation layers represented by shaded boxes. The annotation layer at the top encodes a
syntax tree using annotated nodes and green dominance edges. The next two boxes denote two separate
non-hierarchical annotation layers using annotated nodes. They are linked to the constituent tokens
using dashed coverage edges. The last annotation layer encodes a dependency tree using blue pointing
relation edges. In this graph, the nodes A and B both cover the token D, but only A dominates D. The
token C precedes the token D and is linked to it by a pointing relation. The token C also precedes the
node B because B’s left-most and right-most covered token is D.

pos=ART
morph=Nom.Pl.*
lemma=der

pos=NN
morph=Nom.Pl.*

lemma=jugendliche

pos=APPR
morph=--
lemma=in

pos=NE
morph=Dat.Sg.Neut
lemma=Zossen

Die Jugendlichen in Zossen

cat=NP

cat=PP

Inf-Stat=newInf-Stat=new

referentiality=discourse-new

func=NK func=NK func=MNR

func=AC func=NK

func=det func=pp func=pn
Dependency

Syntax

Tokens and
positional annotations

Information
structure

Discourse structure

12 15 16 28 29 31 32 38
1 2 3 4

12

12

12

28

29

32 38

38

38

38

A

D

B

C

Figure 6: Annotation graph modeling a phrase from the PCC corpus and some of its annotations.

2.2.2 The corpus hierarchy

A linguistic corpus is often divided into subcorpora by its authors. In Annis, this relationship is modeled
by a corpus hierarchy. We use the term corpus, or root corpus, to refer to a corpus at the root of a corpus
hierarchy. A subcorpus is also called a document. Documents can be annotated with arbitrary key-value

16

1 cat="S" & #1:root & match full sentences

2 pos="VVFIN" & #1 > #2 & and their finite verb

3 node & #1 >[func="SB"] #3 & and their subject

4 #2 .* #3 & where the verb precedes the subject

5 meta::Genre="Politik" only consider documents of the genre Politik

Listing 1: Annis query matching sentences in which the subject follows the verb.

pairs to store meta data. Conceptually, there is no difference between a corpus and document, except
how they are accessed by the user. The web interface presents a list of root corpora from which the user
selects one or more entries. A query is simultaneously evaluated on the selected corpora and their child
documents. The user can limit the evaluation of the query to documents annotated with specific meta
data but cannot select documents directly.

2.3 The Annis query language

An Annis query defines a subgraph template that is matched against the annotation graphs of one or
more corpora. There are three types of predicates:

• Search terms select tokens by their textual content or any node by a key-value annotation. They
are implicitly numbered by Annis in the order they appear in the query, starting with 1.

• Unary linguistic constraints filter nodes by a node-specific property, such as the number of tokens
that are covered by the node.

• Binary constraints enforce a linguistic relationship between two nodes, such as precedence or dom-
inance.

Unary and binary constraints refer to search terms by their implicit index prefixed with a hash mark,
e.g., #1 for the first search term listed in the query. Predicates are combined using & (AND) and | (OR)
and can be grouped with parentheses. The search can be restricted to documents annotated with certain
meta information.

Listing 1 contains an example of an Annis query. A matching annotation graph from the PCC corpus
is depicted in Figure 7. Lines 1 through 3 define three search terms and their position in a dominance
hierarchy: A full sentence (cat="S") dominating a finite verb (pos="VVFIN") and a text span via an edge
that denotes that the constituent serves as the subject of the sentence (func="SB"). In line 4 the relative
position of the verb and the subject is specified. Finally, line 5 restricts the search to documents of a
specific genre. Figure 7 depicts a matching dominance hierarchy from the PCC corpus. The labels 1, 2,
and 3 indicate the nodes matched by the respective search term of the query. Only matched annotations
are depicted, while unmatched nodes and edges are grayed out. Note that annotation names, e.g., cat,
func, or Genre in Listing 1, and annotation values, e.g., "VVFIN" or "SB", are specific to a corpus and/or
an annotation scheme. In another corpus, features such as sentences, verbs, or the genre of the document
may be encoded using different keywords or not at all. Actual Annis keywords, e.g., node, are printed
with a boldface font.

2.3.1 Query functions

Annis queries typically are not evaluated directly but used as a building block for a query function.
A query function first computes the solutions of the Annis query. A query solution, or match, is an
assignment of nodes to the query’s search terms, so that the annotation subgraph induced by these nodes
matches the template defined by the query. In a second step, the query function retrieves information
related to these solutions from the corpus. Currently, there are three implemented query functions:

• COUNT counts the number of subgraphs matching an Annis query.

17

Das forderten sie bei der ersten Zossener Runde am Dienstagabend

1

2 3

func=SB

cat=S

pos=VVFIN

Figure 7: Annotation graph of the dominance hierarchy matched by the Annis query in Listing 1.

• ANNOTATE retrieves for each matched subgraph any text span covering a span of the subgraph,
optionally with a left and right context. The result of this function is transformed by the web
front-end to visualize the annotations of the text surrounding a match, i.e., to create the view on
the right side of the screenshot shown in Figure 3 on page 12. Because the amount of data returned
by this function grows quickly there exists a paged variant as well.

• MATRIX returns a table which for each matched subgraph lists the annotation values of the spans
in the graph. The result of this function is exported as an ARFF file [Gar95] for further analysis
by external tools.

2.3.2 Search terms

There are three types of search terms:

• The keyword node selects any span in the database. Similarly, the keyword tok selects any token.

• Text search: "Mary", or tok="Mary", selects tokens by exactly matching their textual content. Alter-
natively, /Mar(y|ie)/, or tok=/Mar(y|ie), matches the text of a token against a regular expression.
Regular expressions are implicitly anchored by Annis. In the example, the regular expression
^Mar(y|ie)$ would be evaluated. It is also possible to select tokens not matching a string or
regular expression with tok!="Mary" or tok!=/Mar(y|ie)/.

• Annotation search: pos="VVFIN" selects text spans by their annotation. pos!="VVFIN" selects nodes
with a pos annotation that is different from "VVFIN". The annotation value may also be specified
using a regular expression. If the value is omitted, any span with the given key will be matched.
Annis does not make any assumptions about the meaning of the annotation name pos or the value
"VVFIN". These strings are specified by the corpus annotation scheme and are not Annis keywords.

Search terms are implicitly numbered by Annis in the order they appear in the query, starting with 1.
This index is used by linguistic constraints to refer to a particular search term.

2.3.3 Unary linguistic constraints

Unary linguistic constraints follow the form “#i:condition” where i is a search term reference. There
are three unary constraints, listed in Table 1. Note that #i:root matches root nodes in the original
annotation graph and not those nodes that are the root of one connected component, but a leaf in
another. See section 3.1.2 for details.

2.3.4 Binary linguistic constraints

Binary linguistic constraints follow the form “#i operator #j”, where i and j are search term references.
There are four families of operators:

18

Table 1: Unary linguistic constraints in AQL.

Operator Definition

#i:root i is a root node
#i:arity = n i has n children
#i:arity = n,m i has n ≤ k ≤ m children
#i:tokenarity = n i covers n tokens
#i:tokenarity = n,m i covers n ≤ k ≤ m tokens

• Coverage operations are used to express how two spans i and j overlap.

• Precedence operations express how many tokens two spans are apart in the primary text. For spans
covering multiple tokens, the left-most covered token is used if the span is on the right-hand side
of the operator and the right-most covered token is used if the span is on the left-hand side of the
operator.

• Dominance operations relate two spans by their relative position in a dominance hierarchy.

• Pointing relation operations specify that two spans are linked by an edge with a given name.

Table 2 describes the syntax of every binary linguistic constraint including their variants. Both the
pointing relation operator and the dominance operator evaluate a graph of named edges. The name
is mandatory for the pointing relation operator because it is used to distinguish the type of relation
expressed by an edge. For the dominance operator the name is optional. The normal usage omits the
name and evaluates the entire dominance hierarchy. However, some corpus sources use different edge
types to encode parts of the dominance hierarchy; see section 3.1 for details. The user can restrict the
dominance operator to a particular type of dominance edge by using the named variant >name and $name

instead of > and $.

2.3.5 Document meta data

By default, Annis will search every document in the corpus hierarchy below a root corpus selected by
the user. It is possible to restrict the search to documents annotated with certain meta data, using the
expression meta::key="value". Similarly to node annotations, the value of a meta annotation can also
be specified using a regular expression, or can be negated or omitted. Note that although the syntax is
similar to node annotations, meta annotation definitions do not count as search terms and are skipped
when evaluating search term references. They are also not considered when evaluating ORs. A document
will only be searched if all meta annotations in the query are satisfied, regardless of the alternative in
which they appear.

19

Table 2: Binary linguistic constraints in AQL.

Operator Definition

Coverage operations
#i _=_ #j ileft = jleft ∧ iright = jright Exact Cover
#i _i_ #j ileft ≤ jleft ∧ iright ≥ jright Inclusion
#i _l_ #j ileft = jleft Left Align
#i _r_ #j iright = jright Right Align
#i _ol_ #j ileft ≤ jleft ≤ iright ≤ jright Left Overlap
#i _or_ #j jleft ≤ ileft ≤ jright ≤ iright Right Overlap
#i _o_ #j ileft ≤ jright ∧ jleft ≤ iright Overlap

Precedence operations
#i . #j i directly precedes j (same as #i .1 #j)
#i .* #j i indirectly precedes j
#i .n #j i precedes j with distance n
#i .n,m #j i precedes j with distance n ≤ k ≤ m

Dominance operationsa
#i > #j i directly dominates j (same as #i >1 #j)
#i >[key="value"] #j i directly dominates j;

the edge is annotated with the specified annotationb

#i >* #j i indirectly dominates j
#i >n #j i dominates j with distance n
#i >n,m #j i dominates j with distance or n ≤ k ≤ m
#i >@l #j j is the left-most child of ic
#i >@r #j j is the right-most child of ic
#i $ #j i and j are siblings
#i $[key="value"] #j i and j are siblings;

both edges are annotated with the specified annotation
#i $* #j i and j share an common ancestor

Pointing relation operationsd
#i ->name #j i directly points to j via a specifically named edge
#i ->name [key="value"] #j i directly points to j;

the edge is annotated with the specified annotation
#i ->name * #j i points to j, either directly or through intermediate nodes;

every edge along the path has the same name
#i ->name n #j i points to j with distance n
#i ->name n,m #j i points to j with distance n ≤ k ≤ m

aThere also exist named variants >name and $name for the unnamed dominance, sibling, and common ancestor operators.
bEdge annotations can be specified in the same way as node annotations, i.e., using regular expressions or by negating or
omitting the value. It is also possible to specify multiple edge annotations by separating them with spaces.

cAn edge annotation can also be specified using the variants #i >@l [key="value"] #j or #i >@r [key="value"] #j.
dThe name is mandatory because it is used to specify the type of relationship modeled by the pointing relation edge.

20

3 Implementation of Annis on a relational database system

This section describes how Annis can be implemented on top of a relational database. We explain how
an Annis annotation graph is stored as a set of relations and illustrate the translation of Annis queries
to SQL. At the end of the section, we briefly discuss the current implementation on top of PostgreSQL.
A more detailed description of Annis on PostgreSQL is available in [Ros11].

3.1 Storing the Annis model in a relational database

The annotated text spans of an annotation graph may be arranged in one or more hierarchies of arbitrary
depth using different edge types. Before the graph is stored in a database, it is split into a set of connected
components, so that each component contains only one type of edge. The structure of these components
is encoded relationally using a combined pre/post-order scheme [GKT04].

3.1.1 The pre/post-order scheme

The pre/post order scheme encodes the structure of a DAG by assigning each node one or more pairs of
pre-order and post-order ranks. Starting from a root node, the graph is traversed depth-first, indicated
by dark blue arcs in Figure 8a. Each node is assigned a pre-order value when the traversal reaches
the node before its children are visited and a post-order value after its children have been visited. One
counter is used for both the pre-order and the post-order ranks. If the graph is multi-rooted, the traversal
is repeated for each root node. The combined pre/post-order scheme allows an efficient reachability test:
There exists a path between v and w if and only if prev < prew < postv. Such a test is used to implement
the indirect variants of the pointing relation and dominance operator.

In a DAG, a node may have more than one parent, as long as there are no directed cycles. Such nodes
will be visited multiple times by the traversal. During each visit, a separate set of pre/post-order values
is generate, all of which must be stored to encode the complete structure of the graph. In addition,
the descendents of a node with many parents are also visited multiple times and accordingly also have
multiple pre/post-order values assigned to them [TL05]. In Figure 8a, the nodes d, e and f are visited
twice as indicated by the light blue arcs. In Figure 8b a tree is constructed from the pre/post-order
values generated by the traversal. A node’s pre-order value is displayed at its left side and its post-order
value at its right side. The second set of pre/post-order values of d, e, and f is assigned to virtual

a

b

c d

e f

g

(a) Traversal

a

b

c d

e f

g

d′

e′ f ′

1

2

3 4 5

6 7 8 9

10

11 12

13

14 15 16 17

18

19

20

(b) Decomposed tree

Figure 8: Assignment of pre/post-order values in a DAG. Adapted from [Vit04].

21

a

b

c

d e

f

g

(a) Annotation graph

a

b

c

d e

f

g

c

d e

1

2

3

4 5 6 7

8

9 10

11

12

13 14 15 16

17

18

19

20

(b) Decomposed tree

(1) a

b

c

d e

f

g

1

2

3

4 5 6 7

8

9 10

11 12

13

14 (2) g

c

15

16 17

18

(3) c

d e

(c) Separated components

Figure 9: Component separation by edge type.

copies of these nodes. Evidently, the pre/post-order scheme introduces a certain amount of redundancy,
e.g., the subgraph consisting of dotted edges in Figure 8b. This subgraph is already contained elsewhere
in the graph. We will discuss the impact of these duplicate edges below.

3.1.2 Separation of connected components by edge type

Queries on an hierarchical annotation type must only consider paths in which every edge is of the same
type and has the same name. For example, in Figure 9a, solid edges denote a dominance hierarchy and
the dotted edge a pointing relation. The node f does not dominate the node c because there exists no
path from f to c consisting only of solid edges. However, if pre/post-order values are assigned to the
original graph, as in Figure 9b, the condition pref < prec < postf is true, suggesting the existence of
such a path. Since we cannot test the type of every edge along a path, we have to split the graph into
connected components, shown in Figure 9c, so that each component only contains edges of one type.
This process generates multiple pre/post-order values for nodes which are leaves in one component and
the root of another component of a different type, such as the node g in Figure 9c. Conversely, it may
separate multiple incoming edges of nodes such as c, making the annotation graph more tree-like and
reducing the inherent redundancy of the pre/post-order scheme. For example, in Figure 9b the maximum
post-order rank is 20, i.e., there are ten pre/post-order pairs. In Figure 9c there are only nine pre/post-
order pairs assigned to the nodes in the components (1) and (2). No pre/post-order values have to be
generated for the nodes in component (3) because it is already contained in component (1).

3.1.3 Merging of dominance hierarchies

In some corpora, e.g., the TIGER Treebank, there are two separate types of dominance edges. Normal
edges make up the dominance hierarchy, while secondary edges link discontinuous constituents in co-
ordinated phrases. An example of a syntax tree containing a secondary edge is shown in Figure 16 on
page 37. TIGERSearch does not take secondary edges into account when evaluating a dominance query.
Instead, the user has to explicitly ask for these edges using a separate language construct. In Annis, we
would like to consider paths containing both types of edges for the dominance operator while still keep-
ing the distinction between the two edge types if the user queries it explicitly. For example, Figure 10a
shows a syntax graph with a dotted secondary dominance edge. If the graph is separated by edge type,
e.g., components (1) and (2) in Figure 10b, the path from f to c is lost. These two components can be
used to answer dominance queries which specify the type of dominance edge. We also need to combine

22

a

b

c

d e

f

g

(a) Dominance graph

(3) a

b

c

d e

f

g

c

d e

19

20

21

22 23 24 25

26

27 28

29

30

31 32 33 34

35

36

37

38(1) a

b

c

d e

f

g

1

2

3

4 5 6 7

8

9 10

11 12

13

14 (2) g

c

15

16 17

18

(b) Decomposed dominance trees

Figure 10: Merging of dominance hierarchies.

the separate dominance hierarchies into the merged component (3) containing both types of dominance
edges in order to answer dominance queries without further specifying the dominance type. Note that
the encoding of the merged component may require more pre/post-order values than the individual com-
ponents containing only one edge type taken together. For example, the maximum post-order rank of
components (1) and (2) is 18, i.e., there are nine pre/post-order pairs, whereas in component (3) there
are ten pre/post-order pairs.

3.1.4 Redundancy in the pre/post-order scheme

As we have already discussed, the encoding of the annotation graph using pre/post-order values may
introduce some redundancy, e.g., there may be more pairs of pre/post-order values than there are edges
in the graph. Indeed, every time an already encountered node v is visited again during the traversal, a
new pair of pre/post-order values is generated for each node in the subgraph below v. The amount of
duplicate pre/post-order pairs depends on the number of non-tree edges in the DAG as well as on their
location. A non-tree edge that is closer to the leaves of the DAG will generate fewer duplicates than a
non-tree edge that is close to the root of the DAG.

In practice, the largest amount of duplication is not generated by visiting nodes multiple times, but
because of the merging of separate dominance hierarchies. As a result, each connected component
is stored once individually and a second time as part of the merged component. This replication at
least doubles the number of pre/post-order values, as Figure 10b shows. The edge type of the merged
component is set to a value that is distinct from other dominance edge types. Thus, the set of pre/post-
order values is partitioned by the edge type into distinct subsets and we only have to consider one of
those subsets during the evaluation of a dominance operation. The redundancy of pre/post-order values
for a node in a particular subset is unaffected by the node’s pre/post-order values in other subsets. We
can therefore examine the redundancy in each subset individually. For example, the nodes c, d, and e in
component (1) in Figure 10b have only one pair of pre/post-order values each, even though they have
two pairs in component (3).

The separation of the annotation graph into connected components results in the generation of additional
pre/post-order values due to the creation of new roots in the individual components. However, the
individual components are more tree-like and structures that previously required multiple pre/post-
order values, e.g., component (3) in Figure 9c, can be pruned. In practice, the remaining individual
components contain very few non-tree edges and therefore the redundancy introduced by the pre/post-
order scheme is quite low. For example, in the merged dominance hierarchy of the TIGER corpus, 0.6%

23

node

id
namespace
name
text_ref
left
right
span (*)
token_index
left_token (*)
right_token (*)
corpus_ref
toplevel_corpus (*)

rank

pre
post
parent (*)
node_ref
component_ref
root (*)
level (*)

node_annotation

node_ref
namespace
name
value

edge_annotation

rank_ref
namespace
name
value

n

component

id
type
name
namespace

n

n

n

n

text

id
name
text

ncorpus

id
name
type
version
pre
post
toplevel (*)
path_name[] (*)

corpus_annotation

node_ref
namespace
name
value

n

n

n

Figure 11: Annis database schema.

of edges are non-tree edges. Consequently, there are only 1.3% more pre/post-order values encoding the
merged dominance hierarchy than there are dominance edges.

Given this low amount of overhead, the pre/post-order scheme presents a good trade-off between
the efficiency of answering reachability queries in a DAG and the space requirements of the indexing
scheme [TL05]. Two popular alternative approaches are recursive queries and the computation and stor-
age of the transitive closure of the DAG. A recursive query needs no additional information, but the
time required for its evaluation is dependent on the length of the path and generally prohibitive. The
transitive closure as an index is usually faster, but requires considerably more resources to store.

3.1.5 Database schema

Figure 11 depicts the database schema that is used to store an Annis annotation graph in a relational
database. The attributes marked by an asterisk contain data that is not strictly necessary to encode the
annotation graph. They can be derived from the unmarked attributes, but are stored in the database
to speed up the evaluation of certain Annis operators. Some of these values are computed before the
corpus is imported and are already contained in the relANNIS files, while others are computed during
the corpus importation process.

Each entity in the graph, i.e., nodes, edges, and annotations, has a name. It is used as a database-
independent identifier of nodes, to encode the subtype of an edge, and as the key of an annotation
key-value pair respectively. The name of a node is typically derived from an XML id attribute, but is
not guaranteed to be unique. Names are optionally prefixed with a namespace which may be used to
group data belonging to the same annotation layer. By convention it is set to the name of the tool that
was used to create the annotation data.

The text, node, and node_annotation tables

A tuple in the node table refers to the text span from the character at index left to right (inclusive) of
the text referenced by the foreign key text_ref. If the text span is a token, the span attribute contains
the actual content of the token and the token_index attribute its position in the text. For non-tokens,
both attributes are set to NULL. The attributes left_token and right_token contain the index of the
left-most and right-most token covered by the current text span respectively. For tokens, these attributes
are set to the value of token_index. The attributes left_token and right_token are used to implement
precedence operators independently of coverage operators which use the attributes left and right. The
corpus_ref attribute refers to the document containing the span and the toplevel_corpus attribute to
the document’s root corpus.

24

Node annotations are stored in the node_annotation table. The annotation name is used as the annota-
tion key.

The text table stores the full contents of a primary text, i.e., the text of the corpus without its annota-
tions, in the text attribute. It is used to construct the textual contents of non-token text spans during
the evaluation of MATRIX queries.

The component, rank, and edge_annotation tables

The component table contains an entry for every connected component in the annotation graph, parti-
tioned by edge type and name. Since every edge in a component has the same type and name, this
information is also stored in the component table.

A tuple in the rank table stores a pair of pre/post-order values of the node referred to by the node_ref

foreign key. The parent attribute is a foreign-key reference to the pre attribute of the parent node and
the component_ref attribute is a foreign-key reference to a component containing the node. A row in the
rank table in which the parent attribute is not NULL can be interpreted as an incoming edge of the node
specified by the node_ref foreign key with the type and name specified by the component_ref foreign key.
If parent is NULL, the row refers to a root node in the component referenced by the component_ref. The
rank table also contains a root attribute that is set to TRUE if a node is a true root in the annotation
graph, i.e., the node is a root in all components containing the node. Finally, the level attribute stores
the depth of the node in the component referenced by component_ref.

Edge annotations are stored in the edge_annotation table similarly to node annotations.

The corpus and corpus_annotation tables

The corpus table contains an entry for each root corpus and its subcorpora or documents. The corpus
hierarchy is encoded using a combined pre/post-order scheme. Since a document may only have one
parent document, a separate table to store the pre and post-order ranks is not needed. The attributes
name, type, and version are currently not used by the Annis service. The boolean attribute toplevel

signals a root corpus. Finally, the path_name array attribute enumerates the names of every document
along the path from the root corpus to the document encoded by a corpus tuple. This information is
also used by the web interface to visualize the context of matches.

Corpus annotations are stored in the corpus_annotation table similarly to node and edge annotations.

The node table contains two foreign-key references to the corpus table. The toplevel_corpus attribute
is used to restrict the search to root corpora selected by the user in the web interface. The corpus_ref

attribute points to the document containing the span encoded by the node tuple. It is used to restrict
the search to documents matching a set of corpus annotations.

3.2 Computing the solutions to an Annis query

The first step of evaluating an Annis query is the computation of its solutions, i.e., the subgraphs of the
annotation graph matching the template defined by the query. Based on these solutions, query functions
then retrieve additional data from the corpus. A solution for a query with n search terms is represented
by an n-tuple where the i-th element is the primary key of the node tuple representing the text span
matched by the i-th search term. The SQL query that computes the solutions to an Annis query with n
search terms follows the template shown in Listing 2.

3.2.1 Tables required for the evaluation of search terms

For each search term of the Annis query, the FROM clause of the SQL query shown in Listing 2 will list
an alias of the node table because a text span matched by a search term is identified with the primary

25

1 SELECT DISTINCT

n times︷ ︸︸ ︷
node1.id AS id1, . . . , nodeN.id AS idN

2 FROM node AS node1 JOIN additional tables required to evaluate the first search term,

3 ...,

4 node AS nodeN JOIN additional tables required to evaluate the n-th search term
5 WHERE predicates on attributes of the selected tables to evaluate the query

Listing 2: SQL query template to compute the solutions of an Annis query.

key of the tuple representing the text span in node. Depending on the type of search term and how it
is used in linguistic constraints, additional table aliases may have to be joined: Annotation search terms
require the node_annotation table for evaluation. The rank and component tables have to be joined if
the search term is used in a dominance or pointing relation operation. The rank table is also required if
the search term is qualified with the root operator. Finally, if the search term is used as the right-hand-
side argument of an edge-annotated dominance or pointing relation operation the edge_annotation table
has to be joined. One edge_annotation table alias is required for each edge annotation specified in the
operation.

3.2.2 Annis queries containing OR

An Annis query q containing OR is evaluated as follows: First, the query is transformed into its disjunctive
normal form q′ =

∨k
i=1 qi with k alternatives. Next, the maximum number of search terms m in any

alternative is determined. Then, for each alternative qi an SQL query fragment is generated according to
the template in Listing 2. If the alternative has n search terms and n < m, the SELECT clause is padded
with m − n NULL terms. Finally, the SQL fragments are concatenated into one SQL query with UNION.
As an example of this process, Listing 3 depicts an SQL query template for an Annis query with two
alternatives q1 and q2. q1 has n search terms, q2 has m search terms, and n < m.

1 SELECT DISTINCT

n times︷ ︸︸ ︷
node1.id AS id1, . . . , nodeN.id AS idN,

m− n times︷ ︸︸ ︷
NULL, ..., NULL

2 FROM node AS node1 JOIN ...,

3 ...,

4 node AS nodeN JOIN ...

5 WHERE predicates to evaluate q1

6 UNION SELECT DISTINCT

m times︷ ︸︸ ︷
node1.id AS id1, . . . , nodeM.id AS idM

7 FROM node AS node1 JOIN ...,

8 ...,

9 node AS nodeM JOIN ...

10 WHERE predicates to evaluate q2

Listing 3: SQL query template for an Annis query with multiple alternatives.

3.3 Implementation of select Annis language features

Many Annis language features evaluate one or more text span properties for which there exists a cor-
responding table attribute in the SQL schema. Binary linguistic operations compare properties of two
spans which have been declared previously in the query. The implementation of these features is fairly
straightforward. The main exception is the common-ancestor operator which tests whether two spans

26

are connected by a third, implicit parent span. The implementation of search terms containing a reg-
ular expression is also more complicated because regular expression operations differ greatly in various
RDBMS. Below, we illustrate the SQL implementation of Annis language features by means of a few
select operations.

3.3.1 Implementation of search terms

A text search is implemented by testing the content of the node.span attribute. The generic token search
tok can be implemented in two ways: By a NOT NULL predicate on node.span or a NOT NULL predicate
on node.token_index. An annotation search is implemented by joining the node_annotation table and
testing the content of node_annotation.name and, if necessary, of node_annotation.value. The generic
node search term requires no predicates in the WHERE clause. Simply listing a node table alias in the FROM

clause and selecting the primary key node.id in the SELECT clause is sufficient to implement this search
term.

3.3.2 Implementation of coverage operators

Coverage operations compare the left and right text borders of two spans taken from the same text. The
left and right borders of a span are modeled by the attributes node.left and node.right. A reference to
the primary text from which the span is taken is stored in the attribute node.text_ref. To implement
coverage operations in SQL, we only have to substitute the corresponding table attribute for the text span
attributes referenced in the comparisons in Table 2. For example, the Exact Cover operation #1 _=_ #2

is implemented by the following SQL predicates:

node1.text_ref = node2.text_ref AND

node1.left = node2.left AND

node1.right = node2.right

3.3.3 Implementation of precedence operators

In Annis, precedence within a text is defined in terms of an explicit order on the tokens of a text. This
order is determined by a property modeled by the attribute node.token_index. It can be extended to
non-token spans s and t by comparing the index maxs of the right-most token covered by s with the index
mint of the left-most token covered by t, i.e., s <pos t := maxs < mint. Using the order relation <pos

we can formally define the precedence operations as follows:

#i .* #j ⇐⇒ maxi < minj

#i . #j ⇐⇒ maxi = minj − 1
#i .n #j ⇐⇒ maxi = minj − n
#i .n,m #j ⇐⇒ minj −m ≤ maxi ≤ minj − n

(1)

For each span, the index of the left-most and right-most tokens covered by the span are stored in the
attributes node.left_token and node.right_token. To implement precedence operations in SQL, we
substitute the corresponding table attribute for the text span attributes referenced in the comparisons
in Equation 1. For example, the direct precedence operation #1 . #2 is implemented by the following
SQL predicates:

node1.text_ref = node2.text_ref AND

node1.right_token = node2.left_token - 1

27

3.3.4 Implementation of dominance and pointing relation operators

As described in section 3.1, the annotation graph of a corpus is stored in an RDBMS using a pre/post-
order scheme. Additionally, operators that evaluate the position of two spans in the annotation graph
require that the nodes representing the spans are contained within a single, typed and named component.
The pre and post-order ranks of a node are stored in the attributes rank.pre and rank.post, while the
component type and name are stored in the attributes component.type and component.name.

To implement a dominance and pointing relation operation in SQL, we have to join both tables to the
span’s node table alias, compare the pre and post values of both spans, and make sure that both nodes
are contained in an appropriate component. For example, the indirect dominance operation #1 >* #2

can be implemented by the following SQL predicates:

1 rank1.pre < rank2.pre AND

2 rank2.pre < rank1.post AND

3 component1.id = component2.id AND

4 component1.type = ’d’ AND

5 component1.name IS NULL

6 component2.type = ’d’ AND

7 component2.name IS NULL

Strictly speaking, the predicate in line 3 is not required because the pre and post-order ranks are com-
puted in such a way that the comparison in lines 1 and 2 holds if and only if both nodes are in the same
component. However, making this relationship explicit in the SQL query provides additional information
for the query optimizer to exploit. Lines 4 and 6 test if the component is a dominance component; for
pointing relation components the type is p instead of d. Lines 5 and 7 restrict the test to the merged
dominance hierarchy. The component tests are attached to the both sides of the operator even though
the component is the same in both cases. In general, we provide as much information as possible in the
SQL query for the benefit of the query optimizer.

The direct variants of the dominance and pointing relation can test the parent attribute instead of a
potentially costly range predicate on the pre and post-order ranks. The direct variants also allow the
specification of one or more edge annotations. To implement an edge-annotated operation the table
edge_annotation has to be joined to the node table alias representing the span on the right-hand side
of the operator because an entry in rank is interpreted as an incoming edge of the span specified by
rank.node_ref. For example, the edge-annotated direct dominance operation #1 >[func="OA"] #2 can
be implemented by the following SQL predicates:

rank1.pre = rank2.parent AND

component1.id = component2.id AND

component1.type = ’d’ AND

component1.name IS NULL AND

component2.type = ’d’ AND

component2.name IS NULL AND

edge_annotation2.name = ’func’ AND

edge_annotation2.value = ’OA’

The sibling operator can be implemented by testing the rank.parent attribute of both spans. If an edge
annotation is specified the edge_annotation table needs to be joined to both spans and tested.

3.3.5 Implementation of the common ancestor operator

The common ancestor operator does not fit the general template for dominance operations shown above.
It requires a search for a span that is an ancestor of both source spans in the same component. This
is implemented as a nested subquery in an EXISTS clause as shown below for the operation #1 $* #2.
The subquery is correlated which is usually an indicator of bad performance. However, it is guarded

28

both inside and outside by a test on the component.id attribute. As a consequence of the outside test
in line 1, the evaluation of the EXISTS clause can be skipped in many cases. The inside test in line 7
restricts the search space considerably, to about eleven nodes in a component on average in the TIGER
Treebank (see Table 9 on page 43). Furthermore, the evaluation of the EXISTS clause can finish as soon
as one common ancestor is found and does not have to enumerate them (line 6).

1 component1.id = component2.id AND

2 component1.type = ’d’ AND

3 component1.name IS NULL AND

4 component2.type = ’d’ AND

5 component2.name IS NULL AND

6 EXISTS (SELECT 1 FROM rank AS ancestor WHERE

7 ancestor.component_ref = rank1.component_ref AND

8 ancestor.pre < rank1.pre AND rank1.pre < ancestor.post AND

9 ancestor.pre < rank2.pre AND rank2.pre < ancestor.post)

3.3.6 The COUNT query function

The COUNT query function returns the number of distinct solutions to an Annis query. For queries
consisting of only one alternative and n search terms this can be achieved by modifying the SELECT clause
as follows: SELECT count(DISTINCT node1.id,. . ., nodeN.id). However, if the query consists of multiple
alternatives joined by UNION, this strategy returns the counts for each alternative separately. They would
then have to be added in a second step. Instead, we have implemented the COUNT query function as
shown in Listing 4: The SQL query computing the solutions to the original Annis query is wrapped as
a nested subquery in the FROM clause between lines 2 and 4. The number of solutions is counted in the
outer query in line 1. It is not necessary to include the DISTINCT operator in the outer query because
the query solutions have already been deduplicated by the nested subquery. A similar strategy is used
to implement the ANNOTATE and MATRIX query functions which are described in more detail in
appendix A.

1 SELECT count(*)

2 FROM (

3 SQL subquery to compute query solutions as described in Listing 2 and Listing 3
4) AS solutions

Listing 4: SQL query template for the COUNT query function.

3.3.7 Regular expression searches

In Annis, text and annotation searches can be formulated with the help of a regular expression, follow-
ing a POSIX or Perl-compatible syntax [IEE04]. The SQL:2003 standard [ISO03] defines two different
and incompatible ways to evaluate regular expressions: First, the LIKE_REGEX predicate (Feature F841)
matches a string against an XQuery regular expression. XQuery regular expressions implement a su-
perset of the POSIX regular expression syntax and expressiveness [MMWK10]. Second, the SIMILAR TO

predicate (Feature T141) matches a string against a SQL regular expression. SQL regular expressions
differ from POSIX regular expressions in their treatment of the . (dot) and the _ (underscore) charac-
ter. In POSIX regular expressions, the dot is a placeholder for any character whereas the underscore is
interpreted literally. In SQL regular expressions the situation is reversed: The dot is interpreted literally
and the underscore serves as a placeholder.

Unfortunately, neither predicate is particularly useful to implement regular expression text and annota-
tion searches. The SIMILAR TO predicate requires a translation from POSIX-style regular expressions to

29

SQL regular expressions. This process may introduce subtle errors or irregularities in the evaluation of
these searches which may not be immediately apparent to the user. As far as we know, the LIKE_REGEX

predicate is not supported by any major commercial or open-source RDBMS. Thus, the implementation
of regular expression searches is specific to the underlying RDBMS. In PostgreSQL, we use the ~ (tilde)
operator which matches the string on its left-hand side to the regular expression on its right-hand side.

3.3.8 Corpus selection

Typically, a user selects a list of corpora in the web front-end on which to evaluate an Annis query. He
can further restrict the evaluation to those documents which match meta data specified in the query.
For the remainder of this work we assume that the database contains a single corpus and that the query
does not contain any meta annotations. In appendix A, we describe the necessary steps to restrict a
query to a set of corpora or annotated documents in more detail.

3.4 Current implementation on top of PostgreSQL

It is not efficient to evaluate Annis queries on a large corpus that is stored using the schema consisting of
normalized tables as described in section 3.1.5, also called the source schema. For example, the evaluation
of the query shown in Listing 1 on page 17 on the TIGER Treebank5 on a decent server6 requires at
least 2.2 seconds. This duration does not seem overly long. However, the query is not very complex and
even such a small delay has an impact on the attitudes and performance of users in interactive computer
tasks [GHMP04]. Even worse, on a consumer laptop the query will not even finish within 60 seconds.
As one goal of Annis is to make large corpora accessible to researchers working on their own hardware,
such a performance is unacceptable.

One reason for the slow performance of the source schema is the joining of multiple tables to construct
a span that is referred to by a search term in an Annis query, particularly if that span is referenced
by a dominance or pointing relation operation. Figure 12 shows the query execution plan generated by
PostgreSQL to evaluate the Annis query shown in Listing 1 on page 17 on the TIGER Treebank using
the source schema. A total of 12 tables, four for each search term, have to be joined. The shaded areas

5The TIGER Treebank is described in detail in section 5.1.
6The test systems are described in detail in section 5.3.

Table 3: Evaluation time (in ms) of some Annis queries on the TIGER Treebank.

Query
Server Laptop

Source Materialized Source Materialized
schema schema schema schema

node 876 2888 1199 3810

tok 733 3120 958 3863

cat="S" & pos="VVFIN" & #1 _i_ #2 1980 4860 2394 6600

cat="S" & pos="VVFIN" & #1 > #2 4904 369 18080 776

cat="S" &

cat="NP" & #1 >[func="OA"] #2 &

cat="NP" & #1 >[func="SB"] #3 &

#2 .* #3

> 60 s 276 > 60 s 599

cat="S" & #1:root &

pos="VVFIN" & #1 > #2 &

node & #1 >[func="SB"] #3 &

#2 .* #3

3669 535 > 60 s 7336

30

[f
un

c=
"S

B
"]

sp
an

 #
2

sp
an

 #
3

sp
an

 #
1

po
s=

"V
V

FI
N

"
#2

 $
 #

3
#2

 .*
 #

3
#1

 >
 #

2

ca
t=

"S
"

#1
:r

oo
t

24
31

30
7

(1
57

 m
s)

71
96

5
(1

12
4

m
s)

36
02

6
(5

1
m

s)
11

58
4

(5
3

m
s)

93
64

35
62

8
35

62
8

35
62

8

93
64

93
64

93
64

93
64

12
62

01
4

(3
17

 m
s)

12
62

01
4

(3
23

 m
s)

35
62

8

48
71

6
48

71
6

69
06

8
69

06
8

(7
0

m
s)

69
06

8
(8

0
m

s)
13

79
01

 (1
49

 m
s)

13
79

01
 (7

0
m

s)
13

79
01

24
31

30
7

(3
65

 m
s)

24
31

30
7

(5
55

 m
s)

48
71

6
48

71
6

69
06

8
(2

07
 m

s)

11
58

4
(5

8
m

s)

93
64

93
64

93
64

F
ig
ur
e
12
:Q

ue
ry

ex
ec
ut
io
n
pl
an

fo
r
th
e
A
nn

is
qu

er
y
sh
ow

n
in

Li
st
in
g
1
on

pa
ge

17
ev
al
ua

te
d
on

th
e
so
ur
ce

sc
he
m
a.

31

Seconds

Q
ue

rie
s

2 3 4 5 6 7 8 9

0

10

20

30

40

50

60

(a) Histogram size: 100 entries (14 timeouts)

Seconds

Q
ue

rie
s

2.0 2.5 3.0 3.5

0

10

20

30

40

50

60

(b) Histogram size: 10 entries

Figure 13: Frequency distribution of query runtime depending on statistics.

combine the table and/or index scans as well as join operations that are required to construct a span
referenced by a single search term in the query. Printed below each operation is the number of returned
rows or the number of scans for the inner table of a nested loop join. Additionally, the execution time
of the operation is listed if it requires more than 100 ms. Operations implementing a specific part of
the Annis query are labeled accordingly. Note that the dominance operation #1 > #3 is rewritten by the
PostgreSQL query execution engine to the sibling operation #2 $ #3 which is equivalent for this query.
Table scans and joins implementing a specific part of the Annis query are distributed across the entire
query plan leading to large intermediate results that are discarded later on. This query plan requires
3.7 seconds to evaluate.

Additionally, the evaluation on the source schema is nondeterministic, insofar that the chosen query
execution plan depends on the statistics kept by PostgreSQL. For each attribute in a database schema,
PostgreSQL stores the frequency of the most common values in its catalog. This histogram is used by
the query optimizer in its estimation of the costs of a particular query. The size of the histogram can be
set for each attribute individually, ranging from one to 10000 entries, with the default size of 100 entries.
Unless the table is very small, PostgreSQL generates the histogram by scanning a random sample of the
table, i.e., its composition will be different every time it is regenerated. As Figure 13a shows, the contents
of the histogram can have a profound effect on the runtime of a query. The chart depicts the frequency
distribution of the results of 100 experiments running the query shown in Listing 1 on the TIGER
Treebank using the normalized schema. For each experiment, the statistics of the node_annotation

attribute were regenerated using the default size of 100 entries, and the best time of five consecutive runs
was determined. The effect of the random sample is a large spread between 2 and 9 seconds required to
evaluate the query if the default histogram size of 100 entries is used. In 14 cases, PostgreSQL created a
query plan that did not finish within 60 seconds. Contrary to intuition, as Figure 13b shows, the behavior
is improved by reducing the amount of statistics kept by PostgreSQL. However, we do not know if this
result can be generalized to other queries.

Performance can be improved by materializing the result of common joins. It is not possible to construct
a materialized view specifically for every query because the number of accessed tables depends on the
number and type of search terms in a query and on the linguistic constraints referencing the search
terms. However, the information about a single span that is distributed across the five tables node, rank,
component, node_annotation, and edge_annotation in the source schema can be collected in a facts table.
This is called the materialized schema. The facts table is accessed once for each search term and is joined
with itself to implement binary linguistic constraints. This is illustrated by the query plan in Figure 14.
Since the facts table contains all the information about a span it is possible to construct dedicated
indexes which can be used to implement a search term selection and a binary linguistic constraint in one
index scan. For example, the partial index idx_1971_nav_pos_dom_parent in Figure 14 only indexes
those rows in facts for which the conditions node_annotation_name = ’pos’ and edge_type = ’d’ are
true. The indexed columns are node_annotation_value and parent. This index is used to implement the
search term pos="VVFIN" and returns the tuples in such an order that the dominance operation #1 > #2

can be implemented efficiently by a nested loop or merge join. Rows encoding a different node annotation

32

40141 (92 ms)148799

40141 (161 ms)

20485

20485 (102 ms)

14924 9364

cat="S"
#1:root

pos="VVFIN"
#1 > #2

#1 >[func="SB"] #3

#2 .* #3

Figure 14: Query execution plan for the Annis query shown in Listing 1 on page 17 evaluated on the
materialized schema.

name or another edge type are skipped. The indexing scheme is described in more detail in [Ros11]

The materialized schema has disadvantages. The first is increased disk space consumption. As Table 4
shows, the size of the materialized facts table is more than twice the size of the individual tables of
the source schema. The additional indexes further increase the required disk space by a factor of four.
Furthermore, the performance of Annis queries is not improved uniformly as Table 3 shows. Whereas
Annis queries containing dominance and pointing relation operations are considerably sped up, simple
but often-used queries such as node or tok or queries which only use coverage or precedence operations
are slowed down. Evaluations of regular expressions such as /[Dd]as/, in which the first character is not
fixed, also require more time. The facts table acts as a materialized view of a common subexpression
used in Annis queries, but it is not used transparently by the PostgreSQL query optimizer [CKPS95].
The Annis SQL compiler must decide whether to use the source schema, the materialized schema, or a
combination thereof to answer an Annis query. Currently, the materialized schema is always used.

A second disadvantage of the materialized facts table is that it limits the flexibility of the database
schema. For example, suppose that we wanted to model multiple token orders. The texts in a learner
corpus are often annotated with insertions, deletions, or movement, in the case that the original author
did not produce a grammatically correct sentence. There are effectively two token orders in such a corpus:
The order used by the author and the order of the text that has been corrected by the annotator. This
could be modeled by extracting the attributes left_token and right_token from the node table into a
separate precedence table and adding a discriminating attribute similar to component.type for edges.
Queries evaluated on the source schema that do not use a precedence operation should be unaffected by
this change. However, if the join of the source tables including the new precedence table are materialized,
the number of additional token orders increases the size of the facts table. This change would affect
queries that do not use a precedence operation similarly to how the queries in Table 3 that do not use a
dominance or pointing relation are affected by the evaluation on the materialized facts table.

Table 4: Disk usage (in MB) of the TIGER Treebank in PostgreSQL.

Tables Indexes Total

Source schema 525 1407 1932
Materialized schema 1201 6707 7908

33

4 Related Work

In this section we survey other linguistic query languages. We first list a set of requirements that should
be fulfilled by a linguistic query language. We then discuss XML-based and dedicated linguistic tree
query languages as well as multi-layer query languages, and compare them to Annis.

4.1 Requirements for a modern linguistic query language

There exists a multitude of linguistic query languages, often developed for a specific corpus model or
annotation scheme. Lai and Bird surveyed six languages for querying treebanks and tried to extract
common features in an effort to devise a reusable linguistic query language [LB04]. In [LB10] they list
requirements for a linguistic tree query language:

Linear order. At the most basic level a text is arranged sequentially. Users want to navigate this order,
e.g., to find the text preceding the finite verb in a sentence. Note that this does not necessarily
exclude overlap, e.g., in a conversational corpus when two persons speak at the same time.

Hierarchical order. Many linguistic annotation schemes are implemented as hierarchies of text spans,
e.g., syntax or dependency trees. Other schemes link text spans without imposing a hierarchy,
e.g., coreference annotations.

Interactions between linear order and hierarchy. Users want to query both the linear and hierarchical
dimension simultaneously, e.g., find the left-most or right-most descendents of a non-terminal node
in a syntax tree.

Boolean operations. Starting from simple queries users want to construct complex queries using con-
junction, disjunction, and negation. Note that proper support of negation implies universal quan-
tification.

Closures. Specifically users want to be able to impose restrictions on the steps involved in the closures
of basic relations such as dominance and precedence. As an example, consider the sentence in
Figure 17. It contains three levels of alternating, nested prepositional phrases (PP) and noun
phrases (NP). This nested structure could in principle be extended to an arbitrary depth and users
may want to search for such alternating structures.

Based on our experience with Annis, we can formulate additional requirements for a query language for
multi-layer corpora, that go beyond those of tree query languages [ZRLC09]:

Arbitrary annotation layers. Many multi-layer corpora are built by extending existing syntactically an-
notated corpora with additional annotations covering a wide variety of linguistic fields. Thus,
a multi-layer corpus query language should not impose any restrictions on the annotation layers
contained in a corpus.

Overlapping annotations. Tree query languages are specifically designed to query syntax trees, i.e., a
well-formed nested structure. In contrast, the annotations in a multi-layer corpus may overlap
arbitrarily and the query language must provide the means to query these relationships.

Multiple, semantically different hierarchies. Syntax trees are only one example of a linguistic annota-
tion that is modeled as a hierarchy. Multi-layer corpora can contain many concurrent hierarchical
annotations over the same text. The query language must be able to distinguish between them
and should allow the user to query them simultaneously.

Operations over one or more texts. In most tree query languages, the precedence operation is re-
stricted to individual parse trees. Consequently, it is impossible to construct a query that crosses
sentence boundaries. In a multi-layer corpus, users want to express relationships that may cover
the entire text or even multiple texts in the case of parallel corpora.

34

4.2 XML-based query languages

With the widespread adoption of XML [BPSM+00] in the linguistic community, there have been many
attempts to use XML-related languages to query linguistic corpora. For example, Bouma and Klooster-
man used XPath [CD+99] to query the Alpino Dependency Treebank using an XML storage scheme that
mirrored the dependency hierarchy with the XML tree structure and encoded the linear order of the text
in XML attributes [BK02]. Taylor investigated the translation of dedicated linguistic query languages to
XSLT [C+99] in order to simplify their implementation by reusing established technologies [Tay03]. Some-
what related, Schäfer used XSLT to connect different components in a NLP pipeline used to construct a
syntax parser [Sch03]. Finally, XQuery [BCF+10] has been studied extensively as a linguistic query lan-
guage, e.g., in [Cas02, RECD08, BK07], and [ABdVB06]. The latter uses MonetDB/XQuery [BGvK+06]
which stores the XML graph in a RDBMS using an encoding based on pre/post-order traversal ranks.

Being Turing-complete, XSLT and XQuery clearly make it possible to formulate any kind of practical
linguistic query [Kep04]. However, this typically presupposes at least some knowledge of the underlying
data model and how it is encoded in XML. XSLT and XQuery also require at least some programming
knowledge and may thus be inaccessible to corpus linguists if used to query a corpus directly. These
disadvantages can be addressed if XSLT and XQuery are used as an intermediate layer of the querying
interface, e.g., in [Tay03] or [RECD08].

Bird et al. and Cassidy argue that while XPath and XQuery are a good match for querying hierarchical
constraints, their support for sequential constraints is weak [BCD+05, Cas02]. Bouma and Kloosterman
disagree and propose to encode the linear order of the text as XML attributes independently of the
hierarchical order [BK02]. They show that this scheme allows for a compact treebank encoding and
for the concise formulation of many linguistic queries using XPath alone. For more complex relation
extraction tasks they propose custom functions based on XQuery [BK07].

To address perceived shortcomings of XML-based query mechanisms, some modifications of XPath have
been proposed. Bird et al. defined and implemented LPath [BCD+06] which extends XPath with an
immediate precedence axis, subtree scoping, and edge alignment. Subtree scoping refers to the ability to
restrict operations to the subtree below a node. Edge alignment is the ability to navigate to a left-most
or right-most descendent of a node. Precedence in LPath is defined by the order of the terminals of an
annotation hierarchy, i.e., the linear order is dependent on the hierarchical order. Lai and Bird showed
that LPath+, which uses the LPath extensions within Conditional XPath [Mar04] to support simple
closures, is equivalent to first-order logic on trees [LB10]. LPath is translated to SQL and evaluated
on an RDBMS using the following labeling scheme to store trees: Each node has two labels, l and r,
which are independent for each tree. For the left-most leaf v1 we set v1.l = 1 and for each leaf vi we set
vi.r = vi.l +1. For two consecutive leaves vi and vi+1 we set vi+1.l = vi.r. Finally, the minimally covered
value of l and the maximally covered value of r are propagated upwards for non-terminals. These two
labels, along with the identifier of the parent node, allow the implementation of XPath axes and LPath
extensions using simple value comparisons, similar to a pre/post-order scheme.

Vitt defined DDDquery [Vit05] which extends XPath with axes for immediate precedence and alignment
of parallel text spans, as well as regular expressions over path expressions, the ability to return subtrees
instead of node sets, and the ability to bind node sets within a path expression to a node variable and
reference it later. The latter feature enables the user to specify cycles in the query. The DDDquery data
model is not an XML tree, but a directed, acyclic graph (DAG) in which nodes may have multiple parents
and the entire graph may have multiple roots. DDDquery thus supports concurrent hierarchies which
are distinguished by node types. Specifically, the alignment of parallel text spans is implemented by a
particular node structure which can be evaluated by dedicated axis steps. Precedence is defined according
to the position of a text span in the original text, independently of any hierarchical organization. The
syntax does not permit negated filter expressions and thus only supports existential queries. DDDquery
is translated to SQL and evaluated on an RDBMS using a pre/post order scheme adapted to the encoding
of DAGs [TL05]. Regular path expressions are implemented using the recursive query functionality of
modern RDBMS, i.e., Feature T131 in [ISO03]. A heavily modified version of DDDquery was used as an
intermediary step in the translation from AQL to SQL in the first implementation of Annis 2 [Ros11].

35

This dialect lacked many features, such as regular path expressions or the alignment of parallel texts.
Instead, it included functionalities required by Annis, such as the ability to specify an edge type or edge
annotations and simple boolean formulas over path expressions.

It is our experience that XPath-based query languages are ill-suited for querying multi-layer corpora.
Their basic primitive, the path expression, makes it difficult to write queries that access multiple an-
notation hierarchies and other, non-hierarchical annotation layers simultaneously. Consider the query
shown in Listing 5 against the TüBa-D/Z corpus [HKN+04]. It references two independent hierarchies,
a dominance and a coreference layer. XPath only provides the means to navigate one of them. In our
DDDquery implementation, we added a type attribute to the child and descendent axes, e.g., ./child[d]::*
for dominance edges, in order to formulate queries using multiple hierarchies. The query also connects
two sentences in both directions, first directly through the precedence operator in line 2 and then indi-
rectly through a coreference link in line 8. The query essentially specifies a cycle in the annotation graph.
XPath does not provide the means to “remember” a node and thus cannot express such cycles. Even
with node variables in DDDquery, the formulation of cycles is cumbersome. Instead, query languages
that allow the user to search for text spans matching certain criteria, e.g., the existence of an annotation,
and to express a linguistic relationship between these spans with dedicated operators are more intuitive.
In our view, such languages make it simple to construct a query iteratively and can hide many details of
the underlying data model.

1 cat="TOP" &

2 cat="TOP" & #1 . #2 ; match two neighboring sentences

3 field="VF" & #2 _i_ #3 ; where the prefield of the second sentence

4 cat="NX" & #3 _=_ #4 ; is a noun phrase

5 pos="ART" & #4 > #5 ; dominating a definite article

6 tok=/[Dd]../ & #5 _=_ #6

7 node & #4 _=_ #7 ; and where the noun phrase

8 node & #7 ->coreferential #8 ; has an antecedent

9 #1 _i_ #8 ; in the first sentence

Listing 5: A complex Annis query referencing two hierarchical annotation layers and specifying a cycle
between text spans. Adapted from [KRZZ11].

4.3 Dedicated tree query languages

One prototypical linguistic tree query language is TGrep, developed for the Penn Treebank [MMS93].
In this corpus format, syntactically parsed sentences are stored independently from each other. Conse-
quently, relationships that cross sentence boundaries are impossible to express. TGrep provides a very
rich query language based upon immediate precedence and immediate dominance as primitives. Here,
precedence is defined by the order of the tokens of the syntax tree. A TGrep query consists of nodes
that are referenced by their textual content or a part-of-speech annotation for tokens, or by a syntac-
tical annotation for non-terminals. Nodes are linked by a set of required and prohibited relationships.
TGrep2 [Roh05] is an almost backwards-compatible reimplementation of TGrep. It provides additional
node relationship operators and other enhancements. Nodes are combined using boolean operations
instead of a specifying a set of required or prohibited relationships on them. TGrep2 supports a limited
form of universal quantification, however the exact semantics are not sufficiently documented. Fur-
thermore, to create queries whose relationship structure is not a tree, globally scoped variables can be
assigned to nodes and referred to later in the query. Two interesting features of TGrep2 are the ability
to mark parts of the pattern as optional and to find only those sentences in the corpus which match
multiple patterns at once.

Similarly, TIGERSearch [Lez02] was developed for the German treebank TIGER [BDE+04]. It also uses
parse trees of sentences as its basic structure, but nodes can have multiple annotations. For example,

36

Figure 15: A syntax tree with a crossing edge caused by a discontinuous phrase.

tokens are annotated with their part-of-speech category, their lemma, and their morphological category.
Edges can be labelled to denote the grammatical function of the target constituent. The corpus format
supports crossing and secondary edges. The former are required because of the existence of discontinuous
phrases in German, e.g., the verb phrase es fassen in Figure 15, which is interrupted by the word nicht.
The latter are used to model coordinated phrases in which constituents are missing in one conjunction.
For example, in Figure 16 the noun phrase die in der Wochenendausgabe genannte Zahl is nominally a
constituent of the two verb phrases headed by the verbs dementieren and bestätigen. However, the second
verb phrase is shortened and the noun phrase is only attached to first verb phrase in the syntax tree. A
secondary edge, depicted as a dotted blue line, is inserted into the graph to indicate that the noun phrase
is a constituent of the second verb phrase. Secondary edges are not processed by the dominance operator
and must be queried separately. The corpus is converted into a Prolog-like facts database with which
the query is unified during evaluation. To limit the search space, TIGERSearch first eliminates those
graphs in the corpus which do not contain a match for the most restrictive positional annotation used
in the query. In the original implementation variables are existentially qualified. However, there exists a
reimplementation which supports universal quantification [MLV08]. Besides its widespread use in corpus
linguistics, TIGERSearch has also been employed to model and search protein databases [SR03].

VIQTORYA [SK02], developed for the Tübingen Treebank [HBK+00], allows the specification of multiple
unconnected trees in one query. This ability is needed because the treebank contains structures which are
not connected to the sentence root, e.g., disfluencies such as uh in English or ähm in German, repetitions,
hesitations, and “false starts”. The query language theoretically allows the construction of graphs in which
there are nodes with multiple parents, but it is unclear if this is actually supported by the implementation.
Explicitly numbered variables representing a token, a part-or-speech category, or a syntactical function
can be combined using a direct and indirect dominance and an underspecified precedence relationship
by referring to the variable number. There is no support for immediate precedence. Complex queries
can be created using conjunction, disjunction, and negation. However, the latter is restricted to atomic
terms, i.e., variable definitions and linguistic relationships. Variables are existentially qualified. The
query is translated to SQL and evaluated on an RDBMS, using a scheme that explicitly stores tokens,
non-terminals, and relationships in separate tables. Theoretically, the database schema and the query
language allow annotations that cross sentence boundaries. However, tokens and relationships are indexed

Figure 16: A syntax tree from the TIGER Treebank containing a secondary edge.

37

Figure 17: A syntax tree of an English sentence with nested prepositional and noun phrases.

by a tree identifier in the database and the treebank uses one tree-like structure per sentence.

Finite Structure Query (fsq) [Kep03] uses first-order logic as its language paradigm. Propositional
annotations are treated as node properties and expressed using unary predicates on node variables. There
exists a predicate that tests for the tokenness of a node and one that tests for the label of an edge which
is pushed down to the child node. Linguistic relations such as immediate dominance, precedence, and
secondary edges between nodes are expressed as binary relations. These atomic terms can be combined
using a LISP-like syntax into a first-order logic formula, including implication and universal qualification.
Each tree in a treebank is tested independently of the others. Therefore, annotations crossing sentence
boundaries are not possible. The time to test whether a fsq formula is satisfied by a tree is exponential in
the quantifier depth of the formula. Evaluation time is therefore sensitive to how a query is formulated.

Similarly, MonaSearch [MK09] is based on monadic second-order logic (MSO), i.e., first-order logic
extended with set variables. MSO has the property that the transitive closure of a relation defined
in MSO is also in MSO. For example, dominance can be defined as the closure of the parent-child
relationship. This makes it possible to query arbitrarily nested structures. For example, the syntax tree
of a sentence from the Penn Treebank [MMS93] in Figure 17 contains three levels of alternating, nested
prepositional phrases (PP) and noun phrases (NP). This structure could, in principle, be extended to an
arbitrary depth, only limited by the need of a sentence to be finite. A formula in first-order logic is unable
to capture such a structure because it has to be extended for each additional level. In MSO, one can define
a binary relation of a prepositional phrase dominating a noun phrase and then assert that the top-level
prepositional phrase and the most deeply nested noun phrase are contained in the transitive closure of
this relationship. MSO formulas are decidable on trees and can be efficiently evaluated by converting the
formula into a tree automaton and testing each tree in the treebank if it is accepted by the automaton.
This process is delegated to the external toolkit MONA [KM01], which was originally developed for
hardware verification. Annotations that cross sentence boundaries are not possible. Similarly, crossing
and secondary edges, such as those in Figure 15 and Figure 16, are ignored because they violate the tree
structure. The translation of a MSO formula into a tree automaton is exponential in the length of the
formula. However, the evaluation of the automaton on a tree is linear in the size of the tree. Maryns
and Kepser argue that the latter is the dominant factor for typical linguistic queries on large treebanks
and that MonaSearch is therefore linear in the size of the treebank [MK09].

38

4.4 Multi-layer query languages and corpus systems

Except for DDDquery, the query languages discussed so far are limited to querying tree-like structures
encoding the syntax of a single sentence. Consequently, annotation structures crossing sentence bound-
aries cannot be queried. The corpus formats on which these languages operate also lack the ability to
model overlapping annotations and concurrent hierarchies. In contrast to the large variety of linguistic
tree query languages, there are few truly multi-level annotation query languages and corpus systems.

One such language is NQL [VEKC03], developed as part of the NITE XML Toolkit [CEHK05]. It is a
successor of the query language Q4M, developed for the MATE Workbench annotation tool [MIM+01].
The underlying data model allows for arbitrary graphs or multi-rooted trees which are independently
ordered along a structural and a temporal dimension. Each node is typed and may be associated with
arbitrary key-value annotations as well as textual and timing information. The query language contains
unary predicates for node properties as well as binary operators that specify how two nodes relate to
each other structurally or temporally. An operator for immediate precedence is missing. Atomic terms
can be combined using standard boolean operations, including implication and universal qualification.
An interesting feature of the system is that queries can be chained, allowing one query to filter the results
of the previous one. The query language is implemented in Java. It operates on in-memory structures
that are created from XML sources and is rather slow on large data sets. There exists a batch mode to
process long-running queries. Mayo et al. discuss how NQL can be evaluated more efficiently using an
implementation on top of XQuery or query rewriting [MKC06].

SPLICR [RSW+09] is a web-based corpus system which also aims to provide the means to query and
visualize heterogenous multi-level corpora and is, on the surface, similar to Annis. Special focuses of
SPLICR are the sustainability of the stored data and a uniform access to diverse corpora. It employs
ontologies of linguistic annotations which can be used to query data. The back-end implementation of
SPLICR is, however, markedly different than that of Annis. It operates directly on stand-off XML files
stored in an eXist database [Mei03] and uses XQuery as its query language. In a stand-off annotation
format the annotation markup is detached from the original text and typically stored in a separate
file [TM97]. SPLICR transforms XML files from heterogenous sources into a dedicated XML-based data
model for multi-layer corpora called AnnoLab [ET07]. Queries in SPLICR can also be constructed with
a graphical query builder. The corpus database is searched iteratively, i.e., the user can peruse the first
results while the system is still searching. Whereas the XML-based approach proved useful with regard
to long-term storage and management of heterogenous corpora, the query performance was rather slow.

4.5 Graphical query languages

An interesting alternative to textual query languages, particularly for novice users, is the visual
construction of queries with the help of a graphical query builder. Such tools are available for
TIGERSearch [VL02] and LPath [BL07]. The latter allows the consecutive graphical refinement of
any tree found in the treebank; a process which the authors call Query by Annotation. The Linguist’s
Search Engine [RE05] has a similar approach: The user enters a sentence and the corresponding parse
tree is generated automatically. They can then modify that parse tree and search for similar occurrences
in data that is crawled from the web. The SPLICR corpus architecture [RSW+09] uses a graphical query
builder to create XQuery expressions. In ICECUP [WN00], graphical queries are the only means to
search the corpus. They can be constructed manually, created from a fulltext search with simple glob-
bing, or derived from the structure of a previously found match. In contrast, the VIQTORYA [SK02]
query tool does not offer a true graphical query builder. It can construct complex queries by listing
nodes and their relations in two separate window panes.

39

4.6 Feature comparison

In Table 5 we compare the features of the linguistic query languages described in this section and
summarize their level of support of the requirements listed in section 4.1. Every language fulfills, at least
to a degree, the basic requirements of a tree query language. In particular, LPath and TGrep2 offer
a very rich variety of structural operators that is not really captured by the table. A major difference
between these languages is their support for boolean operations. LPath, fsq, and NQL implement full
first-order logic including universal quantification. Thus, it is possible to formulate linguistic queries in
these languages, which cannot be expressed in a language without universal quantification. For example,
the canonical negated query used in [LB04] searches for sentences that do not include the word saw.
MonaSearch supports a superset of first-order logic and allows users to query for arbitrarily nested
structures. The languages can also be differentiated by the type of structure that can be queried by
them. LPath and MonaSearch can only process trees whereas the remaining languages support DAGs.

Aside from Annis, only DDDquery and NQL meet all of the additional requirements for a query language
for multi-level corpora. Indeed, the Annis data model and the use of coverage operations is influenced
by NQL, whereas the dominance and precedence operators are taken from TIGERSearch. Because NQL
supports first-order logic it is more expressive than Annis. However, its custom Java implementation is
comparatively slow. As far as we know, Annis is faster than other linguistic query languages that support
a similar feature set. A previous of Annis version used a heavily modified version of DDDquery as an
intermediate language. This dialect did not implement advanced DDDquery features such as regular path
expressions. In our experience, the basic language feature of DDDquery, the path expression, makes the
formulation of complex queries cumbersome. Therefore, recent versions translate Annis queries directly
to SQL.

40

T
ab

le
5:

Fe
at
ur
e
co
m
pa

ri
so
n
of

lin
gu

is
ti
c
qu

er
y
la
ng

ua
ge
s.

X
M
L-
ba
se
d

D
ed
ic
at
ed

tr
ee

qu
er
y

M
ul
ti
-le

ve
l

LP
at

h
D

D
D

qu
er

y
T

G
re

p2
T

IG
E
R
Se

ar
ch

V
IQ

T
O

R
Y
A

fs
q

M
on

aS
ea

rc
h

N
Q

L
A

nn
is

Li
ne
ar

or
de
r

B
as
ed

on
hi
er
ar
ch
y

In
de
pe

nd
en
t

B
as
ed

on
hi
er
ar
ch
y

In
de
pe

nd
en
t

In
de
pe

nd
en
t

In
de
pe

nd
en
t

B
as
ed

on
hi
er
ar
ch
y

B
as
ed

on
hi
er
ar
ch
y

In
de
pe

nd
en
t

D
ire

ct
pr

ec
ed

en
ce

X
X

X
X

X
X

X

In
di

re
ct

pr
ec

ed
en

ce
X

X
X

X
X

X
X

X
X

Li
m

it
s

on
di

st
an

ce
X

X

H
ie
ra
rc
hi
ca
lo

rd
er

X
P
at
h
tr
ee

na
vi
ga
ti
on

X
P
at
h
tr
ee

na
vi
ga
ti
on

T
re
e

na
vi
ga
ti
on

D
ed
ic
at
ed

op
er
at
or
s

D
ed
ic
at
ed

op
er
at
or
s

D
ed
ic
at
ed

op
er
at
or
s

D
ed
ic
at
ed

op
er
at
or
s

D
ed
ic
at
ed

op
er
at
or
s

D
ed
ic
at
ed

op
er
at
or
s

D
ire

ct
(l
im

it
s

on
ch

ild
re

n)
X
(X

)
X
(X

)
X
(X

)
X
(X

)
X

X
X

X
X
(X

)
In

di
re

ct
(l
im

it
s

on
di

st
an

ce
)

X
X

X
X
(X

)
X

X
X

X
(X

)
X
(X

)
Si

bl
in

g
(c

om
m

on
an

ce
st

or
)

X
X

X
X

X
(X

)
La

be
lle

d
ed

ge
s

X
X

X
X

X
X

Se
co

nd
ar

y
ed

ge
s

X
X

X

In
te
ra
ct
io
ns

E
dg

e
al

ig
nm

en
t

D
es
ce
nd

en
ts

D
es
ce
nd

en
ts

T
er
m
in
al
s

C
hi
ld
re
n

O
rd

er
ed

ch
ild

re
n

X

Fo
llo

w
in

g/
pr

ec
ed

in
g

si
bl

in
g

X
X

X

B
oo

le
an

op
er
at
io
ns

U
ni
ve
rs
al

F
O

lo
gi
c

E
xi
st
en
ti
al

F
O

lo
gi
c

(U
ni
ve
rs
al
)

F
O

lo
gi
c

E
xi
st
en
ti
al

F
O

lo
gi
c

V
al
ue

or
re
la
ti
on

sh
ip

ne
ga
ti
on

U
ni
ve
rs
al

F
O

lo
gi
c

M
on

ad
ic

SO
lo
gi
c

U
ni
ve
rs
al

F
O

lo
gi
c

V
al
ue

ne
ga
ti
on

C
lo
su
re
s

L
im

it
ed

X
X

A
rb
it
ra
ry

an
no

ta
ti
on

s
X

X
X

X
X

X
X

O
ve
rla

pp
in
g
an
no

ta
ti
on

s
X

X
X

M
ul
ti
pl
e
hi
er
ar
ch
ie
s

X
X

X

O
pe

ra
to
r
sc
op

e
Si
ng

le
pa

rs
e

tr
ee

E
nt
ir
e

co
rp
us

Si
ng

le
pa

rs
e

tr
ee

Si
ng

le
pa

rs
e

tr
ee

Si
ng

le
pa

rs
e

tr
ee

Si
ng

le
pa

rs
e

tr
ee

Si
ng

le
pa

rs
e

tr
ee

E
nt
ir
e

co
rp
us

E
nt
ir
e

co
rp
us

D
at
a
m
od

el
T
re
e

D
A
G

D
A
G

D
A
G

D
A
G

D
A
G

T
re
e

D
A
G

D
A
G

C
or
pu

s
fo
rm

at
P
en
n

T
re
eb
an

k
or

si
m
ila

r
gX

D
F

P
en
n

T
re
eb
an

k

T
IG

E
R

co
rp
us

fo
rm

at

N
E
G
R
A

ex
po

rt
fo
rm

at

N
E
G
R
A

ex
po

rt
fo
rm

at

N
E
G
R
A

ex
po

rt
fo
rm

at

St
an

d-
off

X
M
L

V
ar
io
us

Im
pl
em

en
ta
ti
on

R
D
B
M
S

R
D
B
M
S

C
us
to
m

P
ro
lo
g-
lik

e
R
D
B
M
S

C
us
to
m

T
re
e

au
to
m
at
on

C
us
to
m

R
D
B
M
S

41

5 Experimental setup

In this section we describe the test data we use to measure the performance of Annis on MonetDB. We
use the TIGER Treebank as a test corpus because it is one of the largest corpora containing hierarchical
annotations available in Annis. It is used by students at the linguistics department of the Humboldt
Universität zu Berlin which enables us to collect a real-world query workload for testing purposes. We
also describe the hardware and software configuration on which we perform our measurements and the
measurement procedure.

5.1 The TIGER Treebank

The TIGER Treebank version 2.17 [BDE+04] is a corpus containing about 900,000 tokens and 50,000 sen-
tences of German newspaper texts annotated with syntactic structure. Tokens in the TIGER Treebank
are annotated with three annotation layers. Part-of-speech information is encoded in a pos layer accord-
ing to the Stuttgart/Tübinger Tagset [STST99], morphological information is encoded in a morph layer
according to the TIGER morphology annotation scheme [CHSSZE05], and the token’s lemma is stored
in a lemma layer. Sentences are annotated with their syntactic structure which is encoded as a tree-like
syntax graph with the tokens as leaves. Non-terminals in this graph represent phrases consisting of one
or more constituents and are annotated with their constituent category in a cat layer. Edges in the
graph are annotated with the syntactic function of the child node in a func layer. Both the cat and
func annotation layers use the TIGER annotation scheme [A+03]. In addition to normal dominance
edges pointing from a parent phrase to a child constituent, the corpus also contains secondary, possibly
crossing, edges linking discontinuous constituents as they are found in German syntax. An example of
such a secondary edge is show in Figure 16 on page 37. Table 6 lists the number of distinct values for
each annotation layer. Apart from the annotation value "--" whose semantics are similar to SQL’s NULL
value, there is little overlap between the values of different annotation layers. Values common to multiple
annotation layers are listed in Table 7.

The TIGER Treebank is loaded into Annis by converting it from the TIGER-XML format to relANNIS
files using the Salt’N’Pepper converter framework [ZR10]. relANNIS files are a tab-delimited represen-
tation of the Annis database schema. Table 8 lists the row count for each source table as well as the
facts table of the materialized schema used by the PostgreSQL implementation. Table 9 lists additional
information about the TIGER Treebank representation in Annis.

Table 6: Number of distinct values for each node and edge annotation layer in the TIGER Treebank.

Annotation layer Distinct values

node annotations
cat 26
pos 54

morph 274
lemma 64,870

edge annotations
func 44

5.2 Test queries for the TIGER Treebank

In order to devise a realistic test workload we collect queries from the Annis installation at the Humboldt
Universität zu Berlin’s linguistics department over a period of three months. This set includes queries

7http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/

42

http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/

Table 7: Number of values appearing in multiple annotation layers in the TIGER Treebank.

Annotation value Node annotations Edge annotations
cat pos morph lemma func

- - 2 307,539 121,701 246
AA 111 1
AP 15,116 19
CO 385 5
CS 5,901 2
Gen 8 13
NP 109,119 8
PDS 3,193 130
PP 91,081 2
S 72,346 6

Table 8: Number of tuples in each table of the TIGER Treebank in Annis.

Table Tuples

corpus 1,972
corpus_annotation 1,971
text 1,971
node 1,262,014
node_annotation 3,039,170
rank 2,431,307
component 226,677
edge_annotation 2,204,630

facts 5,774,939

Table 9: General information about the TIGER Treebank in Annis.

Nodes 1,262,014
Tokens (terminals) 888,563
Non-terminals 373,451
Roots 173,257
Isolated nodes 124,541

Average number of nodes in a text 640
Average number of tokens in a text 451
Average number of nodes in a component 11
Edges 1,095,165
Duplicate edge entries in rank 1,211,601

due to dominance merging 1,158,180
due to pre/post order encoding 53,421

43

from students and/or researchers as well as test queries by the Annis developers. In total, there are 224
unique Annis queries against the TIGER Treebank. Some of these queries return no results or are clearly
invalid. Nevertheless, we include them in the test set as they might shed light on performance issues.

5.2.1 Test query groups

A high-level overview of the queries in our test is provided in Table 10. The queries are grouped by
the number of search terms and the type of linguistic operation they use. The five most common
combinations are emphasized. Simple queries with only one search term and no binary operation are
most common. They are followed by queries with two or three search terms connected either by coverage
or by precedence operations. Queries containing dominance operations are rather rare. To get a better
idea of the type of queries contained in the test set, we can divide them into six groups which we describe
below.

Table 10: Test queries grouped by the number of search terms and used linguistic operations.

Search
terms

Binary linguistic operations Number of
queriesCoverage Precedence Dominance

1 74

2 X 3
2 X 16
2 X X 1
2 X 71

3 X 4
3 X 15
3 X X 3
3 X 28
3 X X 3
3 X X X 1

4 X 1
4 X X 2
4 X X X 2

Group A: Simple queries with only one search term

74 queries, or almost a third of the test set, are simple queries with only one search term. These include
the trivial queries node and tok as well as lemma which lists every node with a lemma annotation. Of the
rest, 39 queries are annotation searches, such as pos="VVFIN", and 32 queries are text searches, such as
"man". These queries can also be analyzed by how the text that is searched for is specified. 38 queries use
an exact string match and 33 queries use a regular expression. Of these, there are 28 regular expressions
in which the first character is fixed, such as /kann.*/, compared to five in which the first character is
not fixed, such as /[Kk]ann.*/. Curiously, there are 17 regular expressions which match exactly one
word, e.g., lemma=/gesunken/. Consider that Annis implicitly anchors regular expression searches at
the beginning and at the end. Therefore, these queries can be substituted by an exact string match,
i.e., lemma="gesunken".

Group B: Two search terms linked by Exact Cover

The second largest group contains queries in which two search terms are linked by an Exact Cover
operation. Most queries in this group search for specific grammatical forms of a particular verb. For
example, the first query in Example 1 searches for finite forms of the verb wachsen. Other queries search

44

for infinite verb forms using pos="VVINF", perfect verb forms using pos="VVPP", and infinites with zu using
pos="VVIZU". The second query searches for finite forms of verbs with a certain prefix. The remaining
queries search for adjectives ending in nd followed by one or two characters, e.g., query 3, diminutives,
e.g., query 4, and tokens annotated with lemma="--" which are not punctuation marks, e.g., query 5.
The last query finds words such as ap or ips, i.e., news agency acronyms in newspaper articles. It also
matches English words in German newspaper texts, or internet URLs. Similarly to group A, there are
some queries which use a regular expression matching exactly one word, e.g., pos=/VVFIN/. In total there
are 69 queries in this group.

1 pos="VVFIN" & lemma="wachsen" & #1 _=_ #2

2 tok=/be.+/ & pos=/VVFIN/ & #1 _=_ #2

3 pos="ADJA" & tok=/.+nd..?/ & #1 _=_ #2

4 lemma=/.+[^aeiouäöü]chen/ & pos="NN" & #1 _=_ #2

5 lemma="--" & pos!=/\\$.*/ & #1 _=_ #2

Example 1: Annis queries containing two search terms linked by Exact Cover.

Group C: Three search terms linked by Exact Cover

The third group contains queries in which three search terms are linked by two Exact Cover operations.
The majority of these queries search for an adjective derived from a specific verb. For example, the
first query in Example 2 searches for adjectives based on the verb wachsen. These queries utilize two
token tests: tok=/ge.+en..?/ in which the first character is fixed and tok=/.+nd..?/ in which the first
character is unknown. The remaining queries in this group search for perfect forms of a specific verb,
e.g., query 2, and nouns with an umlaut in the plural form, e.g., query 3. In total there are 28 queries
in this group.

1 pos="ADJA" & tok=/ge.+en..?/ & #1 _=_ #2 & lemma=/(ge)?wachsen/ & #1 _=_ #3

2 pos="VVPP" & tok=/ge.+en/ & #1 _=_ #2 & lemma=/(ge)?kommen/ & #1 _=_ #3

3 lemma=/[^äöü]+/ & tok=/.+[äöü].+/ & pos="NN" & #1 _=_ #2 & #2 _=_ #3

Example 2: Annis queries containing three search terms linked by Exact Cover.

Group D: Two search terms linked by precedence

The queries in the fourth group consist of two search terms which are linked by a precedence operation.
These can be fairly specific, such as the first query in Example 3 searching for the phrase müssen weg,
or rather unspecific, like the second query searching for finite verbs followed closely by a noun. Note
that this group contains queries that produce a large number of results, such as the last two queries.
We believe that these queries are based on faulty assumptions about the Annis data model and discuss
them further in section 5.2.2. In total there are 16 queries in this group.

1 lemma="müssen" & lemma="weg" & #1 . #2

2 pos="VVFIN" & pos="NN" & #1 .1,3 #2

3 pos=/VM.*/ & pos=/VV.*/ & #1 .* #2

4 lemma="müssen" & pos!=/VV.*/ & #1 .* #2

Example 3: Annis queries containing two search terms linked by precedence.

45

Group E: Three search terms linked by precedence

The fifth group contains queries in which three search terms are linked by two precedence operations.
Most of these queries either return no results, e.g., query 1 in Example 4, or a very large result set,
e.g., query 2 which returns more than 60 million matches. Similarly to group D, we believe that these
queries are based on faulty assumptions about the Annis data model. Indeed, the only meaningful query
in this group is the last one below, searching for subordinate clauses with the subject man and the
reflexive pronoun sich. In total there are 15 queries in this group.

1 pos=/VM.*/ & pos=/VV.*/ & pos="($.|$,)" & #1 .* #2 & #2 .* #3

2 lemma="müssen" & pos!="VV.*" & pos="$." & #1 .* #2 & #2 .* #3

3 pos="KOUS" & "man" & "sich" & #1 . #2 & #2 . #3

Example 4: Annis queries containing three search terms linked by precedence.

Group F: Queries with a variable number of search terms and mixed operations

The remaining 22 queries consist of up to four search terms which are connected by various binary
operations. 20 of these contain at least one dominance operation, such as the first query in Example 5,
searching for sentences and their finite verb. The remaining two queries consist of two search terms
connected by an Inclusion operation. This group contains the most complex queries in the test set. For
example, the query in Example 6 consists of four search terms, one unary linguistic constraint, and six
binary operations. It searches for sentences with two constituents in the prefield, i.e., appearing before
the finite verb at the beginning of the sentence.

1 cat="S" & pos="VVFIN" & #1 >* #2

2 cat="S" & pos="VVFIN" & #1 _i_ #2

Example 5: Annis queries with a variable number of search terms and mixed operations.

cat="S" & #1:root &

pos="VVFIN" & #1 >[func="HD"] #2 &

cat & #1 > #3 & #1 _l_ #3 &

cat & #1 > #4 & #3 . #4 & #4 . #2

Example 6: Complex Annis query containing coverage, precedence, and dominance operations.

5.2.2 Invalid test queries

About 15% of the queries contain some kind of error. We keep these queries in the test set because they
can help to illuminate performance issues in our implementation. Most of these are trivial mistakes; in
many cases a keyword or annotation value is misspelled or the wrong kind of quotes is used for regular
expression searches:

Unknown annotation layer. Some annotation searches use an annotation name that does not exist in
the TIGER Treebank, e.g., token=/.+nd..?/. In this case the user most likely meant a text search.

Misspelled annotation value. Some annotation searches use an annotation value which does not exist
in the TIGER annotation scheme, but is similar to a known value, e.g., pos="ADJ". Most likely the
user meant the "ADJA" annotation for adjectives.

46

Regular expressions in an exact string search. Some exact string searches contain regular expression
special characters, e.g., pos!="VV.*". Most likely the wrong type of quotes are used in this case.

Badly escaped regular expression searches. Some regular expression searches do not escape special
character correctly, e.g., pos!=/$.*/. To search for punctuation marks the user has to escape
the $ character with two backslashes, e.g., /\\$.*/. We correct these queries in our test set and
always escape the $ character.

Other errors indicate a misunderstanding of the Annis data model by the user:

Indirect precedence ignores sentence boundaries. The query pos=/VM.*/ & pos=/VV.*/ & #1 .* #2

searches for modal verbs followed by a full verb. However, this search returns many pairs of
unrelated verbs since the indirect precedence operator does not stop at sentence boundaries. Most
likely the user assumed that the precedence operator is only defined on the tokens of a single sen-
tence; this is the behavior of the precedence operator in TIGERSearch. In order to find pairs of
related modal and full verbs the user has to explicitly restrict the search to a sentence, e.g., use
the query cat="S" & pos=/VM.*/ & pos=/VV.*/ & #1 > #2 & #1 > #3 & #2 .* #3.

Using punctuation marks to limit precedence to sentences. Similarly to the example above, the query
pos=/VM.*/ & pos=/VV.*/ & pos="$." & #1 .* #2 & #3 .* #3 searches for a modal verb followed
by a full verb which in turn is followed by a sentence punctuation mark. However, this search also
returns many unrelated results, almost 20 million in the TIGER Treebank. Most likely the user
realized that the precedence operator in Annis does not stop at sentence boundaries and wanted
to limit it by explicitly specifying the end of the sentence in the query.

No universal qualification of negation. Our interpretation of the query
cat="S" & pos=/VM.*/ & pos!=/VV.*/ & #1 >* #2 & #1 >* #3 is that the user intended to search
for sentences containing a modal verb, but no full verb. However, such a query cannot be expressed
in Annis because negated searches are existentially qualified. The query above will match every
sentence containing a modal verb and for each token in such a sentence return a pair consisting of
the modal verb and that token unless is is a full verb.

5.3 Test systems

The main test system on which we measure the performance of Annis on MonetDB is a sysGen Super-
Server8 with two six-core Intel Xeon Westmere 2.66 GHz processors9, 48 GB RAM, and three 15000 rpm
hard disks in a RAID 1 configuration. This server was specifically purchased to run an Annis installation
used by the researchers of the SFB 632. The second test system is a mid-2010 Apple Macbook Pro10

with an Intel Core 2 Duo 2.4 GHz processor11, 4 GB RAM, and a 5400 rpm hard disk. Both computers
run a version of Ubuntu Linux. Additional technical information about them can be found in Table 11.

We use these two machines to represent two different usage scenarios of Annis. In the first use case,
multiple users access a centrally located server, e.g., in an educational context. Performance is crucial in
this setting because many users access the system concurrently and they may be especially dissatisfied
with an overly long waiting period. In the other scenario a researcher is working on his own data on his
own machine. We also strive for good performance in this setting, but the demands are not as strong. A
researcher may be better able to compensate for wait time and may not have access to high-end hardware
in any case.

8http://www.sysgen.de/
9http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-(12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI)

10http://support.apple.com/kb/SP583?viewlocale=en_US
11http://ark.intel.com/products/35568/Intel-Core2-Duo-Processor-P8600-(3M-Cache-2_40-GHz-1066-MHz-FSB)

47

http://www.sysgen.de/
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-(12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI)
http://support.apple.com/kb/SP583?viewlocale=en_US
http://ark.intel.com/products/35568/Intel-Core2-Duo-Processor-P8600-(3M-Cache-2_40-GHz-1066-MHz-FSB)

Table 11: Hardware specification of the two test systems.

Server Laptop

Manufacturer and name sysGen SuperServer Apple Macbook Pro rev. 7,1
Processor(s) 2x Intel Xeon Westmere X5650 2.66 GHz Intel Core 2 Duo 2.4 GHz
CPU cores per processor 6 cores with hyper-threading 2 cores
CPU cache per processor 12 MB 3 MB
Main memory 48 GB DDR3 1333 MHz 4 GB DDR3 1066 MHz
Hard disk(s) 3x 300 GB SAS2 15000 rpm 250 GB SATA 5400 rpm
Hard disk cache 16 MB on disk / 512 MB on controller 8 MB
Hard disk configuration RAID 1
Purchase date November 2011 January 2011
Operating system Ubuntu Linux 11.10 Ubuntu Linux 12.04 LTS

5.4 MonetDB configuration

We use the Jul2012 release of MonetDB, i.e., version 11.11.5, and compile it from sources using the
default build options. MonetDB always uses the entire available memory. Unless otherwise noted, we
do not change any database runtime properties. The databases are accessed in read-write mode, using
MonetDB’s default optimizer pipeline, and 12 threads.

5.5 PostgreSQL configuration

We use PostgreSQL version 9.1.4 and compile it from sources using the default build options. There are
two configuration options which mainly influence the memory usage by PostgreSQL:

shared_buffers Specifies the size of the buffer cache. On a dedicated database server, the PostgreSQL
documentation recommends to use 25% of the available memory [Pos12]. On the server, we set
shared_buffers to 10 GB. This amount is big enough to hold the entire database in main memory.
If a lower setting is used, e.g., 1 GB, queries will interfere with each other, i.e., they will be slower
if multiple queries are tested in a random order compared to when they are run consecutively. This
effect vanishes if 10 GB is used for the buffer cache. On the laptop, we used 1 GB.

work_mem Specifies the amount of memory PostgreSQL uses for a single sort or hashing operation before
temporarily writing data to disk. A query plan may contain many such operations. Therefore, the
amount of memory needed for one operation depends on the complexity of the queries and the
number of concurrent users. One the server, we set work_mem to 1 GB. At this size, we did not
notice any operation using the hard disk. On the laptop, we used 128 MB.

A third memory-related option, effective_cache_size, is used to estimate the size of the operating system
disk cache. The query planner takes this setting into account while calculating the cost of an index scan.
The PostgreSQL documentation recommends to set this value to 75% of the available memory. On the
server, we set it to a slightly lower value of 30 GB because there are other PostgreSQL instances running
at the same time. However, they do not execute any queries. On the laptop, we set it to 3 GB. We use
the default values for other PostgreSQL configuration options.

5.6 Measurement procedure

We report runtimes as measured by the Annis client. To evaluate the performance of individual queries,
we run each query 11 times, discard the first run, and compute the mean of the remaining ten runs. We
do not count the first run in order to ensure that the data required to evaluate a query has already been
loaded into main memory during the measurement and is not displaced by a previous query. To measure
the overall performance of a system, we create various workloads consisting of 10000 queries each. A

48

workload is generated by randomly choosing a query from the test set, taking into account their original
distribution. We do not discard the runtime of any query in a workload. Instead, in order to ensure that
the database is loaded into main memory, we run every query from the test set once before running the
workload.

49

6 Port of Annis to MonetDB

In this section we first describe the necessary modifications of the SQL code generated by Annis in order
to evaluate Annis queries on MonetDB. We then identify various performance bottlenecks and develop
strategies to remedy them. Specifically, we optimize the query execution plans generated by MonetDB,
improve the performance of string searches in general and regular expression searches in particular, and
remove unnecessary operations from the SQL query. At the end of the section, we measure the impact
of each optimization and compare the performance of Annis on MonetDB to the implementation on
PostgreSQL.

6.1 Initial port of Annis to MonetDB

Only a few changes to the generated SQL code are required in order to evaluate Annis queries on
MonetDB. Clearly, the implementation of regular expression searches has to be adapted because it uses
a PostgreSQL-specific operator. Aside from this, two additional minor modifications are necessary: The
evaluation of boolean attributes and the treatment of reserved words in SQL.

6.1.1 Regular expression pattern matching

MonetDB does not directly support the evaluation of regular expressions in SQL statements. Neither
the SIMILAR TO nor the LIKE_REGEX predicates are implemented. However, the underlying MAL kernel
contains a function called pcre.match which matches the string in its first argument against a regular
expression in its second argument using the freely available PCRE library [H+97]. This MAL function
can be exposed by defining a SQL function wrapper as follows:

CREATE FUNCTION pcre_match(s STRING, pattern STRING)

RETURNS BOOLEAN

EXTERNAL NAME pcre.match;

The text search /[Dd]as/ can then be implemented using the following SQL fragment:

pcre_match(node.span, ’^[Dd]as$’)

The pcre.match function returns FALSE if the tested value is NULL. Thus, in order to correctly evaluate a
negated regular expression search, e.g., tok!=/[Dd]as/, an additional IS NOT NULL predicate is necessary.

node.span IS NOT NULL AND

NOT pcre_match(node.span, ’^[Dd]as$’)

6.1.2 Evaluation of boolean attributes

The PostgreSQL implementation uses boolean value expressions of the form attribute IS TRUE and
attribute IS FALSE to evaluate boolean attributes. These predicates are not supported by MonetDB.
Instead, a comparison with a literal truth value of the form attribute = true and attribute = false has
to be used. We have changed the PostgreSQL implementation to also use a comparison with a boolean
literal in order to improve the consistency of the generated SQL code between both implementations.

6.1.3 Reserved keywords as attribute names

The strings left and right are reserved keywords in SQL and must be quoted if they are used as attribute
names. PostgreSQL is lenient insofar as it allows to use them unquoted if they are qualified with a table
name, e.g., node.left. In MonetDB, this produces a syntax error. To retain these reserved keywords as
attribute names they have to be quoted, e.g., node."left".

50

6.2 Query execution plans

Even simple Annis queries may perform slowly on MonetDB, if the corresponding SQL query is generated
according to the process described in section 3.3.6. Furthermore, the runtime may be highly dependent
on how the query is formulated, e.g., the order of the search terms. This is demonstrated by the first
query in Table 12 which searches for sentences and the finite verb they contain. In the second query,
the order of the search terms has been switched. The second column, labeled FROM, lists the runtime in
seconds of the COUNT query function on the initial port of Annis on MonetDB. We will explain the
remaining columns below. Clearly, a performance of 13 seconds or even 27 seconds is not acceptable.

Table 12: Runtime (in seconds) of a simple Annis query using different query execution plans.

Annis query Nested CTE
strategyFROM WHERE

cat="S" & pos="VVFIN" & #1 _i_ #2 12.6 27.4 1.0
pos="VVFIN" & cat="S" & #2 _i_ #1 27.3 12.8 1.0

6.2.1 Computation of query solutions in a nested subquery

Listing 6 contains a template for a SQL query implementing the COUNT query function of an Annis
query q with n search terms. It combines the template to compute the solutions to an Annis query, which
is shown in Listing 2 on page 26, with the template for query functions, which is shown in Listing 4 on
page 29. We call this template the nested/FROM template, because the solutions to the Annis query
are computed as a nested subquery in the SQL code implementing the COUNT query function, and
because the tables that are required to retrieve the information of an individual text span are joined in
the FROM clause. The execution plan that MonetDB generates according to the nested/FROM template
for the first query in Table 12 is shown in Figure 18. The plan only contains selections and joins. Other
operations such as projections and aggregations have been omitted for simplicity. Each leaf shows the
number of tuples in the accessed table. Each inner node shows the number of tuples produced by the
operation as well as the largest intermediate result next to the predicate that produced it. First, key-
value annotations matching the second search term are selected from the node_annotation table and
are joined with the node table to produce candidates for the second search term. Then, the node table
is joined again using the predicates implementing the Inclusion operator. Finally, tuples matching the
first search term are selected from the node_annotation table and joined to produce the solutions to the
query. This join order is not optimal because it unnecessarily produces a very large intermediate result
during the computation of the second join. A better alternative would be to compute candidates for each
search term individually before computing the join that implements the Inclusion operator. This strategy
would reduce the size of the input on the right-hand side of the Inclusion join from 1,262,014 tuples to
72,346 tuples.

There are various ways to influence how MonetDB executes SQL queries generated according to the
nested/FROM template. If we switch the order of the search terms, i.e., evaluate the second query in
Table 12, the change will be reflected in the execution plan. This will double the size of the intermediate
result in the Inclusion join from roughly 64 million to 129 million and also double the runtime of the query.
Curiously, if we move the predicates joining the accessed tables by their foreign key reference from the FROM
clause to the WHERE clause, the order in which the search terms are evaluated is reversed in the execution
plan. This change is reflected in the runtime reported in the third column of Table 12. We call this SQL
generation template the nested/WHERE template. We also observe, for other queries, that the order in
which the predicates are listed in the WHERE clause influences the execution plan chosen by MonetDB.
For example, predicates on the attributes component.name and component.type are evaluated in the order
they appear in the SQL query if the attribute component.name is not tested for a NULL value. However,
the attribute node_annotation.name is always evaluated before the attribute node_annotation.value,
regardless of their order in the SQL query. Due to the large number of possibilities we cannot test every

51

1 SELECT count(*)

2 FROM (

3 SELECT DISTINCT node1.id AS id1, . . ., nodeN.id AS idN
4 FROM node AS node1 JOIN additional tables required to evaluate the first search term,

5 ...,

6 node AS nodeN JOIN additional tables required to evaluate the n-th search term
7 WHERE predicates on attributes of the selected tables to evaluate the query
8) AS solutions

Listing 6: SQL template of the COUNT query function using a nested subquery.

permutation of predicates exhaustively. We do not observe that the order in which the tables are listed
in the FROM clause influences the execution plan, but also cannot test every possible combination. In any
case, the influence on the execution plan by the variations described above is very unpredictable. We
are not able to produce a desired execution plan, in which the computation of candidates for each search
term is pushed down and the join implementing the Inclusion operator is evaluated last.

From our experience with PostgreSQL we would not expect any of the changes described above to have
an impact on the query plan because they do not change the estimated costs of a particular operation.
However, MonetDB does not use cost-based query optimization. Thus, it is more dependent on the
specific formulation of the SQL query.

6.2.2 Computation of query solutions in a common table expression

We can force MonetDB to push down the operations that produce candidates for a search term by a
more radical rewrite of the SQL query using common table expressions, or CTEs, in a WITH clause.
Listing 7 contains the template of a SQL query computing the COUNT query function using common
table expressions. We call this template the CTE template. For each search term in the Annis query,
we create a CTE to produce candidates for the search term, e.g., in lines 2 through 6 for the first search
term. The WHERE clause of such a CTE contains predicates on the node.span attribute for text searches or
on the node_annotation.name and node_annotation.value attributes for annotation searches. The CTE
also contains predicates implementing a unary linguistic constraint referencing the search term. Finally,
if the search term is used in a dominance or pointing relationship operation, we also include predicates on
the component.type and component.name attributes. In the SELECT clause, we list the node.id attribute
and any other attribute that is required to implement a binary linguistic constraint referencing the
search term, e.g., node.text_ref for coverage and precedence operations. The solutions to the query are
computed in an additional CTE in lines 13 to 17, which lists the search term CTEs in its FROM clause
and lists the predicates implementing the binary linguistic constraints of the Annis query in its WHERE

clause. Finally, the query function is implemented in the SQL query by referencing the solution CTE
outside the WITH clause, e.g., lines 18 an 19.

The CTE template exploits the fact that common table expressions are optimized by MonetDB in
isolation. Because the solution CTE references the search term CTEs in its FROM clause, their results
have to be computed by the time the solution CTE is evaluated. This ensures that the generation of
search term candidates is pushed to the bottom of the execution plan, as shown in Figure 19 for the first
query in Table 12. The size of the largest intermediate result is reduced by an order of magnitude. This
difference is reflected in the runtime of the query which is listed in the last column of Table 12. For this
query, the CTE template always evaluates the search term cat="S" first, regardless of the order of the
search terms in the query.

52

45,375
./

na1.node_ref = n1.id

99,819
./

n1.text_ref = n2.text_ref 63,700,204

n1.left ≤ n2.left ≤ n1.right
n1.left ≤ n2.right ≤ n1.right

35,628
./

na2.node_ref = n2.id

35,628
σ

na2.name = ”pos” 888,578

na2.value = ”VVFIN”

3,039,170

node_annotation n2

1,262,014

node n2

1,262,014

node n1

72,346
σ

na1.name = ”cat” 373,436

na1.value = ”S”

3,039,170

node_annotation na1

Figure 18: Query execution plan of an Annis query using the nested/FROM template.

45,375
./

n1.text_ref = n2.text_ref 3,760,562

n1.left ≤ n2.left ≤ n1.right
n1.left ≤ n2.right ≤ n1.right

72,346
./

na1.node_ref = n1.id

72,346
σ

na1.name = ”cat” 373,436

na1.value = ”S”

3,039,170

node_annotation na1

1,262,014

node n1

35,628
./

na2.node_ref = n2.id

35,628
σ

na2.name = ”pos” 888,578

na2.value = ”VVFIN”

3,039,170

node_annotation na2

1,262,014

node n2

Figure 19: Query execution plan of an Annis query using the CTE template.

53

1 WITH

2 span1 AS (

3 SELECT node.id, other attributes required to evaluate binary relations
4 FROM node JOIN additional tables required to evaluate the first search term
5 WHERE predicates to produce candidates for the first search term
6),

7 . . .,
8 spanN AS (

9 SELECT node.id, . . .
10 FROM node JOIN . . .
11 WHERE predicates to produce candidates for the n-th search term
12),

13 solutions AS (

14 SELECT DISTINCT span1.id AS id1, . . ., spanN.id AS idN
15 FROM span1, . . ., spanN
16 WHERE predicates to evaluate binary relations
17)

18 SELECT count(*)

19 FROM solutions;

Listing 7: SQL template of the COUNT query function using common table expressions.

6.2.3 Performance of different query plans

Below we compare the runtime of individual queries using the nested/FROM template, illustrated by red
circles, the nested/WHERE template, illustrated by red diamonds, and the CTE template, illustrated
by black diamonds. The charts are ordered according to the query index in appendix B.1. In the case of
the nested templates, moving the table joins from the FROM clause to the WHERE clause in the SQL query
often affects the generated join plan, although this change might not be reflected in the runtime of the
query. For the CTE template it does not matter whether the tables of a single span CTE are joined in
the FROM or the WHERE clause. In both cases the same join plan is produced.

Group A

The graph of the first group in Figure 20 shows little or no difference in the performance of SQL queries
generated using the nested templates or the CTE template. Indeed, all of the templates generate the
same execution plan, except for two projections that are inserted in the execution plan generated by the
CTE template to model the SELECT clauses of the search term CTE and the solution CTE. At the MAL
layer these additional operations disappear. Here the templates only differ in how BAT variables are
named. Thus, any difference in performance in Figure 20 is due to noise. This result is not surprising
given the simplicity of these queries. A text search requires only one selection predicate on a single table
and therefore no variation is possible in the execution plan. An annotation search joins two tables via
a foreign key reference. In MonetDB this join is implemented using a precomputed hash index. This
index fixes the join order of the two tables in the execution plan.

Still, there is considerable variation in the runtime of the queries in the first group. The major distinction
is between queries on the left side using an exact string match, which require less than 100 ms to evaluate,
and queries on the right side using a regular expression match, which require between two and three
seconds to evaluate. The three queries in the middle fall outside this classification. These are the trivial
queries node and tok which select every span or every token in the annotation graph respectively and
the query lemma selecting every span with a lemma annotation.

The queries labeled A contain a text search with a high selectivity, i.e., less than about 6,000 matches.
They require between 4 and 7 milliseconds to evaluate. A second group of text searches, labeled A∗, is

54

●●●●●●●●
●●●●●●●

●
●

●

●●●●
●

●

●●

●●●●●
●●●●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60

Query index

S
ec

on
ds

 (
lo

g)

●

CTE template
Nested/FROM template
Nested/WHERE template

0.01

0.1

1

10

60

Exact string matches Regular expressions

A

B1

A*

B2

B3 B2*
B3

C

D
E

Figure 20: Performance of queries in group A depending on the SQL template.

considerably slower. They search for the definite articles die and der which are the two most common
words in the corpus with about 25,000 occurrences each. These queries require about 20 milliseconds to
evaluate. The performance of annotation searches mainly depends on the selectivity of the annotation
key. The annotation searches labeled B1 referencing the non-existant word annotation layer require only
17 milliseconds, which is faster than some text searches even though an additional table has to be joined.
The selectivity of the cat annotation key is 0.12. cat annotation searches require between 34 milliseconds
if they produce no results, labeled B2, and 54 milliseconds for the query labeled B2∗ producing about
70,000 results. Finally, pos and lemma annotation searches, labeled B3, require between 50 ms and
84 ms. Both annotation keys have a selectivity of 0.29. The evaluation time of these annotation searches
generally increases with the number of returned matches. On the right side of the graph the situation is
reversed. Annotation searches using a regular expression, labeled D, require between 2.3 and 2.8 seconds
to evaluate. Regular expression text searches, labeled E, are somewhat slower and require between 2.8
and 3.1 seconds to evaluate.

Group B

The graph of the second group of queries in Figure 21 also shows a similar performance of the nested and
the CTE templates. However, in many cases the executed query plans are different. Typically, the nested
templates create a plan that is similar to the one shown in Figure 22 for the query labeled A. First,
the node and node_annotation tables are joined to compute candidates for one search term of the query.
Then, the node table is joined again to evaluate the Exact Cover operator. Lastly, the node_annotation

table is joined again to evaluate the second search term. MonetDB is able to evaluate the three equality
predicates implementing the Exact Cover operator effectively in one MAL operation. In the TIGER
Treebank, about 1.3% of the spans cover the same text as another span. The ratio is even smaller in
the example: Only 13 spans, less than 0.1%, have the same extent as a span annotated with pos="VVPP".

55

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

80 90 100 110 120 130 140

Query index

S
ec

on
ds

 (
lo

g)

●

CTE template
Nested/FROM template
Nested/WHERE template

0.01

0.1

1

10

60

Regular expressions

A
B1

B2 B3
B4

C D

Figure 21: Performance of queries in group B depending on the SQL template.

Therefore, the largest intermediate result of this join contains only marginally more tuples than the
number of candidates for the search term on the left-hand side of the join. This moderately slow growth
of the intermediate result size is why the performance of the nested templates is similar to the one of
the CTE template. In contrast, to implement the Inclusion operator in Figure 18, MonetDB joined
the text_ref attribute with itself without further restricting the result set, which increases the size of
intermediate results by a factor of more than 1,700.

The nested/FROM and the nested/WHERE templates generate the same query plan for the four Annis
queries containing a text search. This search term is always evaluated last. Therefore, the second join of
the node_annotation table is omitted. In effect, similarly to the CTE template, this query plan computes
candidates for every search term before they are joined by a linguistic constraint. Indeed, using a Welsh
t-test with n = 10 and p < 0.05, the difference in the runtime of the nested templates and the CTE
template is not significant.

The nested templates also generate the same query plan for queries containing one exact string match
and one regular expression search, labeled B1−4 in Figure 21. The exact string match, typically a pos
annotation search, is evaluated first and the regular expression search, typically a lemma annotation
search, is evaluated second. Except for the query labeled B1, which contains a regular expression search
on the non-existant token annotation layer, and the query labeled B3, which contains a negated regular
expression search on the pos annotation layer, there is no significant difference in the runtime of the
nested and the CTE templates. The runtime of the queries labeled B2 is fairly constant. These queries
contain a regular expression matching exactly one word, e.g., lemma=/kommen/. The regular expressions
used in the queries labeled B4 do not have a fixed prefix. These queries are somewhat slower.

If the query contains either two exact string matches, e.g., the query A, or two regular expressions,
e.g., the queries labeled C, the nested/WHERE template evaluates the search terms in the order they
appear in the query. Conversely, the nested/FROM template evaluates the second search term first, as

56

we have already seen in section 6.2.1. In the queries labeled C, the first search term is a highly selective
lemma annotation search and the second search term is a pos annotation search with a comparatively
lower selectivity. Consequently, the nested/WHERE template is on average 50 milliseconds faster than
the nested/FROM template. The CTE strategy is even faster than that by about 40 milliseconds on
average. The situation is reversed for the query labeled A. The queries labeled D contain a text search
and as we have discussed above, there is no significant difference in the runtime of these queries.

0
./

na2.node_ref = n2.id

17,783
./

n1.text_ref = n2.text_ref 17,783

n1.left = n2.left
n1.right = n2.right

17,770
./

na1.node_ref = n1.id

17,770
σ

na1.name = ”pos” 888,578

na1.value = ”VVPP”

3,039,170

node_annotation n1

1,262,014

node n1

1,262,014

node n2

5
σ

na2.name = ”lemma” 888,578

na2.value = ”gekommen”

3,039,170

node_annotation na2

Figure 22: Query execution plan for query 75 using the nested/WHERE template.

Group C

The query execution plans generated by the nested and the CTE templates for the queries in group C are
very similar. Consequently, there is little difference in their performance, which is shown in Figure 23.
The query labeled A contains a pos annotation search using an exact string match, a regular expression
text search, and a lemma annotation search using another exact string match, in this order. The CTE
and the nested/WHERE template evaluate the search terms in the order they appear in the query,
but the nested/WHERE template evaluates the second Exact Cover operator before evaluating the third
search term. However, the runtime of both strategies is the same. The nested/FROM template evaluates
the highly selective lemma annotation search first. Consequently, is is faster than the nested/WHERE
or the CTE templates by about 80 milliseconds.

The queries labeled B contain a pos annotation search using an exact string match, a regular expression
text search, and a regular expression lemma annotation search. The nested/FROM and nested/WHERE
templates generate the same query plan. The search terms are evaluated in the order they appear in the
query, and second Exact Cover operator is evaluated before the third search term. The CTE template
also evaluates the search terms in order, but the second Exact Cover operator is evaluated last. The
CTE template is on average about 90 milliseconds faster than the nested strategies.

Finally, the query labeled C contains a regular expression lemma annotation search, a regular expression
text search, and a pos annotation search using an exact string match. These search terms are similar to
those found in the queries labeled B, but their order is different. Again, the CTE template evaluates the

57

●

● ●

145 150 155 160 165 170

Query index

S
ec

on
ds

 (
lo

g)

●

CTE template
Nested/FROM template
Nested/WHERE template

0.01

0.1

1

10

60

A

B C

Figure 23: Performance of queries in group C depending on the SQL template.

search terms in the order they appear in the query. However, the nested/FROM and nested/WHERE
templates both use the same order as for the queries labeled B, i.e., the pos annotation search is evaluated
first. The CTE template is about 45 milliseconds faster than the nested templates.

Group D

So far, the choice of the SQL generation template has had little or no effect on query performance.
However, as Figure 24 shows, there is a significant difference between the nested and the CTE templates
for some of the queries in group D. For the first two queries, labeled A, which contain two text searches,
each of the three templates generates the same execution plan, except for additional projections inserted
in the CTE plan due to the SELECT clauses of the individual CTEs in the query. These additional
operations disappear at the MAL layer.

There are four queries that follow the schema lemma="müssen" & lemma=X & #1 .* #2, with a varying
selectivity of X. For the three queries labeled B1−3, the nested/FROM template outperforms the CTE
template. Similarly to the join plan in Figure 18, the second search term is evaluated first, followed
by the predicates implementing the indirect precedence operator, and finally by the selections of the
first join term. For the query B1, the evaluation of the indirect precedence operator in this join plan
produces an intermediate result containing more than 62,000 entries, which is significantly more than
the 99 tuples produced by the indirect precedence operator in the CTE join plan. Indeed, if only one
thread is used to evaluate the query, the CTE template is somewhat faster than the nested/FROM
template. However, as Figure 25 shows, the join plan generated by the nested templates makes better
use of an additional thread than the CTE join plan. As the selectivity of X decreases, this advantage
vanishes and the CTE template outperforms the nested/FROM template regardless of the number of
threads, e.g., the query B∗. The nested/WHERE template first evaluates the first search term leading to

58

● ●

●
●

●
●

●

●
●

● ● ●

●

●

●

●

175 180 185

Query index

S
ec

on
ds

 (
lo

g)

●

CTE template
Nested/FROM template
Nested/WHERE template

0.01

0.1

1

10

60

A

B1 B2
B3

B*

C
D

E

DNC

Figure 24: Performance of queries in group D depending on the SQL template.

a constant runtime regardless of the selectivity of the second search term. Similarly, the CTE template
pushes both selections down and also has a constant runtime.

The four queries labeled C contain one regular expression which dominates their evaluation time. Sim-
ilarly, the three queries labeled E contain two regular expressions. The query labeled D contains a
negated regular expression search. The SQL query generated by the nested templates does not finish
within 60 seconds, whereas the CTE template requires only a little more time than what is needed to
evaluate the regular expression by itself.

Nested/FROM template CTE template

1 thread 2 threads 3 threads 4 threads

M
ill

is
ec

on
ds

0

100

200

300

Figure 25: Influence of the number of threads on the runtime of query 174.

59

Group E

Many of the queries in group E do not complete within 60 seconds using the nested templates. These
are marked DNC Figure 26. However, except for the query labeled A, the queries in this group indicate
a misunderstanding of the Annis query language by the user. They try to limit unbounded indirect
precedence operators with punctuation marks or assume that the negated annotation search is fully
quantified. Consequently, these queries produce huge result sets as indicated in Table 13.

To evaluate the query A, the CTE and the nested templates first compute candidates for each search
term before evaluating the linguistic operations referencing them. However, before evaluating the third
search term, the nested templates first compute the join of the first and second search term. The CTE
template first evaluates each search term, then joins the second with the third, and joins the first search
term at the end. Although the second query plan creates smaller intermediate results, as Figure 27
shows, the choice between these two query plans by MonetDB is coincidental.

The queries labeled B search for a non-existing annotation value and therefore produce no results. Even
though the query could be aborted once it is known that there are no candidates for a search term, both
the nested and the CTE templates still evaluate the two regular expression search terms in the query.
Thus, all three templates need about 4.8 seconds to evaluate the query. This is twice the time required
to evaluate a regular expression pos annotation search.

The query labeled C contains a direct and an indirect precedence operation. The CTE and nest-
ed/WHERE template evaluate the direct precedence operator first and require about 6.9 seconds to
finish. The nested/FROM template evaluates the indirect precedence operation first which produces a
much bigger intermediate result. Consequently, it requires 53 seconds to finish.

The remaining queries contain two indirect precedence operations. The query labeled D produces a

●

● ●

●
● ● ● ● ● ● ● ● ● ● ●

188 190 192 194 196 198 200 202

Query index

S
ec

on
ds

 (
lo

g)

●

CTE template
Nested/FROM template
Nested/WHERE template

0.01

0.1

1

10

60

A

B
C

D

E F

DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC

* * *

Figure 26: Performance of queries in group E depending on the SQL template.

60

21
./

s2.text_ref = s3.text_ref
s2.right_token = s3.left_token - 1

179
./

s1.text_ref = s2.text_ref
s1.right_token = s2.left_token - 1

7162
σ

s1: pos="KOUS"

974
σ

s2: "man"

5585
σ

s3: "sich"

(a) Nested strategies

21
./

s1.text_ref = s2.text_ref
s1.right_token = s2.left_token - 1

7162
σ

s1: pos="KOUS"

91
./

s2.text_ref = s3.text_ref
s2.right_token = s3.left_token - 1

974
σ

s2: "man"

5585
σ

s3: "sich"

(b) CTE strategy

Figure 27: Query execution plans for query 188 of group E.

Table 13: Runtime (in seconds) and data written to disk (in MB) for long-running queries in group E.

Query Time Results Disk I/O

192 lemma = "müssen" & pos = /VV.*/ & pos = "$." & #1.*#2 & #2.*#3 10 4934027 < 0.1
193* pos = /VM.*/ & pos = /VV.*/ & pos = /\$./ & #1.*#2 & #2.*#3 50 53381806 2920
194* pos = /VM.*/ & pos = /VV.*/ & pos = /\$.*/ & #1.*#2 & #2.*#3 50 53381806 2847
195 pos = /VM.*/ & pos = /VV.*/ & pos = /(\$.|\$,)/ & #1.*#2 & #2.*#3 50 53381806 3026
196 pos = /VM.*/ & pos = /VV.*/ & pos = /\$,/ & #1.*#2 & #2.*#3 55 21195563 8.3
197 pos = /VM.*/ & pos = /VV.*/ & pos = "$." & #1.*#2 & #2.*#3 59 19880160 0.3
198* lemma = "müssen" & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 614 56465383 3811
199* lemma = "wollen" & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 243 32066327 1289
200* lemma="müssen" & pos!="VV.*" & pos="$." & #1 .* #2 & #2 .* #3 591 61399410 4409
201 pos = /VM.*/ & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 >1 hour 230726493
202 pos = /VM.*/ & pos = /VV.*/ & pos = /.*/ & #1.*#2 & #2.*#3 >1 hour 383753400

Query 193 Query 195

S
ec

on
ds

0

1

2

3

4

Figure 28: Runtime spikes during consecutive runs of two queries in group E.

61

relatively small result set containing about 5 million results. The CTE template can evaluate this query
in 10 seconds and the nested/WHERE template just barely manages to evaluate the query in under
60 seconds. The CTE strategy is able to evaluate the queries labeled E, which produce between 20 and
50 million results, within 60 seconds. However, the queries labeled F require 4 minutes or longer to
evaluate using the CTE template as indicated by Table 13. These queries either contain a negated
regular expression search or return more than 100 million results.

During the evaluation of the queries in this group we notice a huge amount of data being written to disk,
a phenomenon that other queries do not exhibit. However, no data was ever read. The last column in
Table 13 lists the amount of data written to disk as reported by iostat averaged over 10 consecutive runs
of each query. It takes about 5 hours to test the nine queries in the table; in this time less than 1 MB is
read from disk. We suspect that these disk writes are caused by the usage of memory-mapped files for
large intermediate results. When these intermediates are freed, i.e., when the files are unlinked, the data
is flushed to disk by the operating system. Memory for smaller intermediates is simply allocated using
malloc. Thus, queries which do not have large intermediate results do not cause disk I/O.

Whereas the runtime of multiple consecutive runs of a query is typically fairly constant, we notice few
but very large spikes during the execution of the queries in group E. This phenomenon is illustrated
for query 193 and query 195 in Figure 28. Each bar represents an individual run of the query used to
compute the mean runtime shown in Figure 26. Query 193 requires on average 49 seconds to evaluate.
However, the fifth run requires 188 seconds, almost triple the usual runtime. Similarly, query 195 requires
about 51 seconds, but the first and seventh run require 188 and 213 seconds respectively. Notice that
there is no such spike during the measurement of disk I/O for query 195. Given the large amount of disk
I/O during the execution of these queries, we suspect that these apparently random spikes are caused
by interference from other processes, such as writing logfiles to disk. We disregard these outliers for the
average runtimes reported in Figure 26 and Table 13. Queries for which outliers are removed are marked
with an asterisk.

Group F

The queries in group F best show the advantage of the CTE template. Compared to group E, none
of the queries in this group are invalid. The nested templates outperform the CTE template for some
of the queries labeled B1−3, but the gains are much smaller than the improvement when the situation
is reversed, e.g., the query labeled A. For some queries, the CTE template performs better than the
nested templates by an order of magnitude. Even though these queries contain comparatively many
search terms and linguistic operations, they finish in well under one second whereas the nested templates
sometimes do not even complete in 60 seconds. The two queries labeled D1 and D2 contain the Inclusion
operator which generally performs slowly in MonetDB. One query, labeled E, includes a cat annotation
search with a regular expression and another query, labeled F , uses a regular expression text search.
The three queries labeled G contain two pos annotation searches with a regular expression. Of these,
one query does not finish within 60 seconds using the nested templates. The queries labeled C contain
a root unary constraint, which causes a syntax error when evaluated using the nested templates.

6.3 Regular expression searches

Queries containing regular expression search terms are dominated by the evaluation of these search terms.
MonetDB requires more than two seconds to evaluate a single regular expression and each additional
regular expression increases the query runtime by at least that amount. Some annotation schemes,
e.g., the morph annotation layer in the TIGER Treebank, encode multiple properties in a single string
and therefore require regular expressions to evaluate them. Thus, the optimization of regular expression
searches is crucial.

62

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

205 210 215 220

Query index

S
ec

on
ds

 (
lo

g)

●

CTE template
Nested/FROM template
Nested/WHERE template

0.01

0.1

1

10

60

A
B1

B2 B3
C

C

D1

E D2

F
G

DNC DNC

Figure 29: Performance of queries in group F depending on the SQL template.

6.3.1 Implementation of regular expression searches

The poor performance of regular expression searches can be traced back to the evaluation of the
pcre.match function in the generated MAL plan. Listing 8 shows the MAL plan for a text search
containing a regular expression. To generate this and the remaining MAL plans in this section, the
MonetDB database is accessed in single-threaded, read-only mode. First the entire span BAT is loaded
in lines 4 to 7 and a new BAT X49 is created in line 8. Lines 9 to 13 contain a loop in which pcre.match

is called for each span value and the result of this evaluation is stored in the BAT X49. This BAT is
then restricted to those rows where the evaluation of pcre.match succeeded in line 16.

The MAL plan evaluating an exact string match, shown in Listing 9, is fundamentally different. The span
BAT is restricted to rows matching a given string in a single MAL operation in line 5. MonetDB still
needs to scan the entire span BAT and create a BAT holding the results. However, as these operations
are moved from the MAL layer to a C function, they can be done much faster.

There are three possible approaches to improve the performance of regular expression searches. The first
aims to reduce the number of iterations of the loop in Listing 8. This can be achieved by adding additional
information to the SQL query. The second option is to remove the loop altogether and match the entire
contents of a BAT against a regular expression in a single MAL operation. This approach requires
changes to the MonetDB kernel. Finally, both approaches can be combined. Even if the matching loop
is moved from the MAL layer to a C function, reducing the input size may still lead to a noticeable
performance gain.

63

1 # A0 contains the regular expression

2 function user.s0_1(A0:str):void;

3 X_2 := sql.mvc();

4 X_3:bat[:oid,:str] := sql.bind(X_2,"annis","node","span",0);

5 X_8:bat[:oid,:oid] := sql.bind_dbat(X_2,"annis","node",1);

6 X_10 := bat.reverse(X_8);

7 X_11:bat[:oid,:str] := algebra.kdifference(X_3,X_10);

8 X_49 := bat.new(nil:oid,nil:bit);

9 barrier (X_52,X_53,X_54) := bat.newIterator(X_11);

10 X_56 := pcre.match(X_54,A0);

11 bat.insert(X_49,X_53,X_56);

12 redo (X_52,X_53,X_54) := bat.hasMoreElements(X_11);

13 exit (X_52,X_53,X_54);

14 X_11:bat[:oid,:str] := nil:bat[:oid,:str];

15 X_12:bat[:oid,:bit] := X_49;

16 X_15 := algebra.uselect(X_12,true:bit);

17 X_16 := algebra.markT(X_15,0@0:oid);

18 X_17 := bat.reverse(X_16);

19 X_18:bat[:oid,:int] := sql.bind(X_2,"annis","node","id",0);

20 X_20 := algebra.kdifference(X_18,X_10);

21 X_21 := algebra.leftjoin(X_17,X_20);

22 (ext48,grp46) := group.done(X_21);

23 X_24 := bat.mirror(ext48);

24 X_25 := algebra.leftjoin(X_24,X_21);

25 X_26 := aggr.count(X_25);

26 sql.exportValue(1,"annis.solutions","L1","wrd",64,0,6,X_26,"");

27 end s0_1;

Listing 8: MAL plan generated for a regular expression text search.

1 # A0 contains the search term

2 function user.s0_1(A0:str):void;

3 X_2 := sql.mvc();

4 X_3:bat[:oid,:str] := sql.bind(X_2,"annis","node","span",0);

5 X_8 := algebra.uselect(X_3,A0);

6 X_9:bat[:oid,:oid] := sql.bind_dbat(X_2,"annis","node",1);

7 X_11 := bat.reverse(X_9);

8 X_12 := algebra.kdifference(X_8,X_11);

9 X_13 := algebra.markT(X_12,0@0:oid);

10 X_14 := bat.reverse(X_13);

11 X_15:bat[:oid,:int] := sql.bind(X_2,"annis","node","id",0);

12 X_17 := algebra.leftjoin(X_14,X_15);

13 (ext32,grp30) := group.done(X_17);

14 X_20 := bat.mirror(ext32);

15 X_21 := algebra.leftjoin(X_20,X_17);

16 X_22 := aggr.count(X_21);

17 sql.exportValue(1,"annis.solutions","L1","wrd",64,0,6,X_22,"");

18 end s0_1;

Listing 9: MAL plan generated for an exact text search.

64

6.3.2 Minimizing regular expression match loop iterations

Skipping NULL values

The runtime of a regular expression search term depends on whether it is a text search or an annotation
search, and for the latter, which annotation key is used. This is illustrated by the three search terms
in Table 14 selecting either every token or every pos or cat annotation in the TIGER Treebank. The
last column contains the number of tuples in the table that is accessed by the search term. The first
search term is evaluated on the node table and the other two are evaluated on the node_annotation

table. The text search and the pos search return roughly the same number of results, however the text
search takes longer even though the table it scans is shorter. The cat and pos searches need to scan
the same table, but the cat search is more than twice as fast as the pos search. This speed difference
can be traced to the respective selectivity of the annotation key. During the evaluation of a regular
expression annotation search, MonetDB will first determine the tuples matching the annotation key and
then evaluate the regular expression on the corresponding annotation values. Since there are fewer cat
than pos annotations, the former is faster. Indeed, the speed difference is proportional to the difference
in the number of returned results.

In contrast, during the evaluation of a regular expression text search, MonetDB will test every value of
the span attribute as there is no other predicate to restrict the result. The span attribute contains a
value only for token spans; for non-token spans it is NULL. It is the overhead of processing these NULL

values that is causing the performance differences between the text search and the pos search in Table 14.
Indeed, as Figure 30 shows, the text search requires the same amount of time to produce its result set
as the pos annotation search. The lightly shaded area at the top of the left bar corresponds to the time
spend processing NULL values in the span attribute. Therefore, the performance of a regular expression
text search should be improved by introducing a NOT NULL predicate on span to reduce the number of
values against which the regular expression is evaluated.

Table 14: Number of results and runtime (in ms) for three regular expression searches.

Search term Results Runtime Table size

tok=/.*/ 888,563 2,842 1,262,014
pos=/.*/ 888,578 2,423 3,039,170
cat=/.*/ 373,436 1,021 3,039,170

tok=/.*/ pos=/.*/ cat=/.*/

RE matching
BAT insertion
loop iteration

S
ec

on
ds

0

2

4

6

8

Figure 30: Breakdown of the time spent in the regular expression matching loop.

Upper and lower boundaries for matched values

Every value matched by a regular expression such as ’^VM.*$’ has the same prefix, in this case ’VM’.
Since Annis implicitly anchors regular expressions, we can always find such a fixed prefix, unless the
regular expression starts with a character group, e.g., /[Dd]as/, an optional parenthesized subexpression,

65

e.g., /(ge)?kommen/, the dot special character, e.g., /.+nd..?/, with a character followed by an asterisk
or question mark, e.g., /m?ich/, or if the regular expression consists of multiple alternatives starting from
the beginning, e.g., /Hund|Katze/. The fixed prefix can be used as a lower bound for the values that have
to be matched against the regular expression. Strings that are lexicographically less than the prefix can
be skipped. An upper bound can be constructed by replacing the last character of the fixed prefix with
its successor. Thus, to match a set of values against the regular expression ’^VM.*$’, it is sufficient to
test the values in the range between ’VM’ (inclusive) and ’VN’ (exclusive).

Replacing regular expressions matching exactly one word

Our test set contains many queries in which a regular expression search term that matches exactly
one string, e.g., pos=/VVFIN/, is used. Since regular expressions are implicitly anchored by Annis, the
node_annotation.value attribute is matched against the regular expression ’^VVFIN$’. This can be
replaced with a point predicate, i.e., the search term is internally substituted with the equivalent exact
string search pos="VVFIN". This replacement removes the overhead of compiling the regular expression.
Furthermore, MonetDB may transparently use a hash index to speed up point predicates on a BAT
containing strings.

6.3.3 BAT-aware regular expression matching

MonetDB creates the loop in Listing 8 because it cannot find a faster way to evaluate the predi-
cate pcre_match(span, ’^...$’) in the SQL query. The signature of the underlying MAL function is
pcre.match(s:str,pat:str):bit, i.e., the function takes two strings as arguments and returns TRUE or
FALSE. However, the first argument in the SQL predicate references the attribute span of the node table.
This reference can be interpreted in two ways: As the value of the span attribute for a specific tuple in
the node table or as the entire set of values contained in the span attribute. When MonetDB encounters
such a call, it will try to use a BAT-aware version of the particular function. A BAT-aware function
takes one or more BATs as its arguments, returns a BAT, and its module name is prefixed with bat,
e.g., batpcre.match(s:bat[:any_1,:str],pat:str):bat[:any_1,:bit]. Only if such a function is not
available, MonetDB will insert a loop in the MAL plan iterating over the values of a BAT as a fallback.

1 # A0 contains the regular expression

2 function user.s0_1(A0:str):void;

3 X_2 := sql.mvc();

4 X_3:bat[:oid,:str] := sql.bind(X_2,"annis","node","span",0);

5 X_8:bat[:oid,:oid] := sql.bind_dbat(X_2,"annis","node",1);

6 X_10 := bat.reverse(X_8);

7 X_11 := algebra.kdifference(X_3,X_10);

8 X_12:bat[:oid,:bit] := batpcre.match(X_11,A0);

9 X_13 := algebra.uselect(X_12,true:bit);

10 X_14 := algebra.markT(X_13,0@0:oid);

11 X_15 := bat.reverse(X_14);

12 X_16:bat[:oid,:int] := sql.bind(X_2,"annis","node","id",0);

13 X_18 := algebra.kdifference(X_16,X_10);

14 X_19 := algebra.leftjoin(X_15,X_18);

15 (ext48,grp46) := group.done(X_19);

16 X_22 := bat.mirror(ext48);

17 X_23 := algebra.leftjoin(X_22,X_19);

18 X_24 := aggr.count(X_23);

19 sql.exportValue(1,"annis.solutions","L1","wrd",64,0,6,X_24,"");

20 end s0_1;

Listing 10: MAL plan using the BAT-aware version of pcre.match.

66

In order to move the loop from MAL layer to a C function, we have implement a BAT-aware version
of pcre.match. This function compiles the regular expression only once. It automatically handles NULL

values, i.e., the output BAT only contains entries for those values in the input BAT that are not NULL.
Listing 10 shows a MAL plan for a regular expression text search using the BAT-aware version of
pcre.match. The loop contained in Listing 8 is replaced with a single call to batpcre.match in line 8.
The returned BAT is then restricted to those entries which match the regular expression in the next line.

6.3.4 Performance comparison of regular expression searches

Figure 31 shows the runtime of text and annotation searches that contain a regular expression using
different techniques to improve their performance. Blue circles represent the time required to evaluate a
search term using the default version of pcre.match and no optimizations. Red stars depict the runtime
of each search term when NULL values are skipped. Green circles show the evaluation time for the
BAT-aware version of pcre.match. Blue and green diamonds represent the default and the BAT-aware
versions of pcre.match for regular expressions with a fixed prefix respectively. Finally, black circles show
the evaluation time for queries in which the regular expression is replaced by an exact string match. The
chart is sorted according to the query index in appendix B.2.

As expected, the performance of text searches is somewhat improved by the exclusion of NULL values.
However, annotation searches incur a small performance penalty due to the additional predicate. The
test is necessary for negated regular expression searches if the default version of pcre.match is used
because it returns FALSE if a regular expression is matched against a NULL value. The BAT-aware version
automatically handles NULL values and removes the corresponding tuples from the output BAT.

Making the pcre.match function BAT-aware improves the performance of regular expression searches by

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

●

0 5 10 15 20 25 30

Query index

M
ill

is
ec

on
ds

 (
lo

g)

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

● ● ●No optimizations
Bounded

BAT−aware
Bounded BAT−aware

Exact match
NULL predicate

10

100

1000

5

50

500

5000

Text searches Annotation searches

A

B

C

D E

Figure 31: Runtime of regular expression searches using different optimizations.

67

an order of magnitude. For text searches, this is still 50 times slower than an exact string match. Another
improvement by a factor of three to seven is possible if the range of tested values is restricted by a fixed
prefix, depending on the number of matched values. For annotation searches, the difference between a
BAT-aware regular expression match and an exact string match is only a factor of five. Restricting the
range of tested values provides an improvement of factor two.

The performance of the queries in Figure 31 shows that the biggest improvement is gained by restricting
the range of tested values. If the fixed prefix is highly selective, e.g., for the queries labeled A and D,
there is virtually no difference between the default version of pcre.match and the BAT-aware version.
Text searches are improved by a factor of more than 70 and annotation searches by a factor of about 15
compared to the default version of pcre.match with no other improvements. If a regular expression has
no fixed prefix, e.g., the queries labeled C, the BAT-aware version of pcre.match provides a performance
gain by an order of magnitude compared to the default version. Regular expression searches with a prefix
of low selectivity, e.g., queries B and E, benefit the most from a combination of both approaches.

6.4 Binary string searches

Many Annis operations are implemented using string searches on a particular attribute. A text search
tests the node.span attribute. An annotation search term evaluates the attributes name and value of
the node_annotation table. Edge annotations are implemented similarly on the edge_annotation table.
Finally, if a search term is referenced in a dominance or pointing relation operation, the attributes type
and name of the component table are tested. MonetDB uses a linear scan of the corresponding BAT to
evaluate these predicates. In general, the entire BAT will be scanned, unless the range has been restricted
by another predicate in the SQL query.

The traditional approach to improve the performance of a table or attribute scan is to use B-Tree indexes.
However, MonetDB does not support any kind of index. Yet, MonetDB will exploit the fact that a table
is sorted on a particular column. In this case, MonetDB will use a binary scan instead of a linear scan
to evaluate predicates on this column. Therefore, we expect the performance of text searches to improve
by sorting the node table on the span attribute. For annotation searches we have to decide between the
attributes name and value of the node_annotation table. The selectivity of value is much higher and
as we have seen in section 5.1, the annotation value in many cases uniquely identifies the annotation
name in the TIGER Treebank. We therefore expect a bigger improvement if the node_annotation table
is sorted on this attribute. We do not test the effect of a sorted edge_annotation or component table
because operations referencing these tables are used much less in our test set.

We use the simple queries containing only one search term from group A to evaluate the influence of a
sorted table on query performance. In Figure 32, black circles represent the performance of text searches
on an unsorted node table and blue diamonds the performance on a table that is sorted on the span

attribute. The chart is ordered according to the query index in appendix B.3. We do not notice a
difference for exact string matches, or regular expression searches that are replaced by an exact string
match, which return only a few results, which are labeled A1. Search terms that return many results,
labeled A2, require longer than search terms returning only a few results on an unsorted table. On
the sorted table, this difference vanishes. The most dramatic improvement is experienced by regular
expression searches that have a highly selective fixed prefix. The performance of these queries, labeled
B1, is improved by a factor of five on the sorted table. Indeed, they are almost as fast as an exact
string match. If the selectivity of the prefix is low, e.g., the queries labeled B2, the improvement is
not as pronounced, but these queries are still more than twice as fast on the sorted table. Finally, the
performance of regular expression searches without a fixed prefix, labeled C, is improved by about 15%.

Figure 33 shows the influence of a sorted node_annotation table on the performance of annotation
searches. Black circles again represent the unsorted node_annotation table. Blue and green diamonds
show the performance on a table sorted by the annotation name and value respectively. Exact string
matches, or regular expression searches that are replaced by an exact string match, show little or no
difference, e.g., the queries labeled A1 for word, A2 for cat, and A3 for pos or lemma annotation searches.
The trivial lemma annotation search, labeled B, is slower on a sorted table, regardless of the attribute

68

● ●
● ●

● ●

●

●

●
● ●

●

●

0 5 10 15 20 25 30

0

50

100

150

200

250

Query index

M
ill

is
ec

on
ds

● Unsorted
Sorted

A1 A2 B1

B2

C

Figure 32: Query performance on a sorted node table.

● ● ● ●

●

● ●
●

● ●
●

●
● ● ● ●

●

0 10 20 30 40

0

50

100

150

Query index

M
ill

is
ec

on
ds

● Unsorted
Sorted by name
Sorted by value

A1

B
A2

A3

C1

C2

Figure 33: Query performance on a sorted node_annotation table.

69

on which the table is sorted. However, the performance of regular expression searches with a fixed prefix
is improved dramatically. For the queries labeled C1, the selectivity of the prefix is about 0.3% of the
entire node_annotation table. These regular expression queries are almost as fast an exact string match
when evaluated on the node_annotation table sorted by the annotation value. The prefix of the query
labeled C2 does not select any tuple in the node_annotation table. Surprisingly, this query is even faster
than an exact string match.

Contrary to our expectations, annotation searches, at least regular expression searches with a fixed prefix,
are faster when the node_annotation table is sorted on the annotation name and not the annotation value.
In Table 15 we summarize the time spent in different operations during the evaluation of the search term
pos=/VM.*/. Indeed, sorting the node_annotation table on the annotation value leads to a larger reduction
in the time required to evaluate the string predicates contained in the query than sorting the table on the
annotation name. However, the time required by other operations in the query is also affected by sorting.
The dominant operation is a semijoin that filters the value BAT to those tuples whose corresponding
entry in name BAT matches pos. This operation is much faster if the table is sorted by the annotation
name, leading to an overall faster performance of the query.

Table 15: Time spent (in ms) during the evaluation of a regular expression annotation search.

Operation Unsorted Sorted table
table by value by name

Predicate on node_annotation.name 28 9.9 0.1
Predicate on node_annotation.value 15 0.1 14
Regular expression matching 4.5 4.2 4.5
Semijoin filtering 85 72 31
Remaining operations 11.5 8.8 10.4

Total 144 95 60

6.5 Deduplication of query solutions

The performance of some queries in group A suggests that the evaluation time of an Annis query is
influenced by the number of returned results. For example, the queries 23 and 24, labeled A∗ in Figure 20,
search for the definite articles die and der and return about 25,000 results. Both queries require about
20 milliseconds to evaluate, three times longer than query 18 which searches for the definite article das
and returns about 6,000 results. Similarly, the runtime of pos and lemma annotation searches, labeled B3

in Figure 20, as well as cat annotation searches, labeled B2 and B2∗ , also increases with the number
of returned results. The most striking examples are the trivial searches node and tok, labeled C in
Figure 20. The tok search is almost 50 times slower than a text search even though it simply tests the
span attribute for values that are not NULL instead of doing a string comparison on the values of the
attribute. The node search is slower still, even though its WHERE clause is empty and it only needs to
count the number of tuples in the node table.

This performance difference is not caused by counting the number of results, i.e., by the call to count(*)

in the SQL query. MonetDB keeps track of the number of entries in a BAT and can simply look up
this value to implement this function call. Instead, the difference is caused by the DISTINCT operator.
Listing 11 shows the MAL program implementing the Annis query tok. The operations implementing
the DISTINCT operator are highlighted in orange and the operations implementing the count(*) function
are highlighted in green. The time spend in each operation is printed in microseconds on the right side
of the program. The DISTINCT operator is responsible for almost 80% of the entire query time whereas
computing the count happens almost instantly.

70

6.5.1 Annis queries requiring explicit deduplication of query solutions

The DISTINCT operator is used in the SQL query to remove possible duplicates from a query’s result set
and to ensure the correct implementation of the COUNT query function. If a query is evaluated on the
materialized schema, i.e., on PostgreSQL, the DISTINCT operator is always required because the mate-
rialized facts table contains many tuples for each span. However, on the source schema, the DISTINCT

operator can be omitted in many cases. If the SQL query accesses the node table exclusively, i.e., if the
Annis query only contains text, node or tok searches, and coverage and/or precedence operations, then
the usage of the node table’s primary key as the text span identifier makes duplicate results impossi-
ble. However, if a text span is contained more than once in an individual component, e.g., because of
secondary edges, an Annis query containing dominance or pointing relation operators may lead to du-
plication of results. Similarly, if a corpus contains multiple annotation layers that have the same name,
but prefixed with different namespaces, an annotation search term may also introduce duplicate results.
Both conditions can be tested once the corpus has been imported, and SQL queries can be tailored
specifically to the peculiarities of a particular corpus.

In the TIGER Treebank, there are no annotation layers with the same name. The DISTINCT operator is
therefore not necessary for annotation searches. However, it is necessary for queries containing dominance
operators, due to secondary edges in the dominance hierarchy of the TIGER Treebank.

6.5.2 Query performance without explicit deduplication

Table 16 lists the number of results and the runtime in milliseconds of some queries from group A with
and without the DISTINCT operator in the SQL query. The relative and absolute speed improvement is
listed as well. Notably, trivial queries benefit if the DISTINCT operator is omitted. The unspecific lemma
annotation search is more than ten times faster and the performance of the node search is improved by a
factor of 50. Text and annotation searches are a little faster, but the improvement is not as pronounced.
The variation of regular expression searches without a fixed prefix is typically higher than the variation

Time Operation

15 function user.s0_1():void;

2 X_1 := sql.mvc();

8 X_2:bat[:oid,:str] := sql.bind(X_1,"annis","node","span",0);

4 X_7:bat[:oid,:oid] := sql.bind_dbat(X_1,"annis","node",1);

5 X_9 := bat.reverse(X_7);

13 X_10 := algebra.kdifference(X_2,X_9);

14824 X_11:bat[:oid,:bit] := batcalc.isnil(X_10);

10582 X_12 := algebra.uselect(X_11,false:bit);

11 X_13 := algebra.markT(X_12,0@0:oid);

4 X_14 := bat.reverse(X_13);

13 X_15:bat[:oid,:int] := sql.bind(X_1,"annis","node","id",0);

10 X_17 := algebra.kdifference(X_15,X_9);

16863 X_18 := algebra.leftjoin(X_14,X_17);

126762 (ext46,grp44) := group.done(X_18);

13 X_21 := bat.mirror(ext46);

36383 X_22 := algebra.leftjoin(X_21,X_18);

8 X_23 := aggr.count(X_22);

13 sql.exportValue(1,"annis.solutions","L1","wrd",64,0,6,X_23,"");

6 end s0_1;
206127 X_5:void := user.s0_1();

Listing 11: Trace of the MAL program for the Annis query tok.

71

of exact string matches. Therefore, an improvement of these searches is only noticeable for queries which
return a large number of results.

The influence of the DISTINCT operator increases with the number of results of the Annis query until it is
the dominant factor. This effect is most evident in the performance of the queries in group E. Table 17
lists the runtime in seconds of those queries in group E which return more than one million results.
Queries returning hundreds of millions of results, which previously would not finish within an hour,
can be evaluated in a few minutes if the DISTINCT operator is omitted. Indeed, without the DISTINCT

operator, the ratio between the number of results of a query and its runtime is fairly constant. If the
DISTINCT operator is included, the number of results is a much less reliable predictor of the runtime,
e.g., query four and eight in Table 17. Furthermore, the occurrences of spikes, signified by an asterisk
next to the runtime of a query, is greatly reduced.

Table 16: Runtime (in ms) of queries in group A with and without DISTINCT.

Annis query Results DISTINCT Improvement
Yes No Relative Absolute

lemma 888,578 291 26 11 264
tok 888,578 293 21 14 272
node 1,262,014 352 6.9 51 346

"das" 6,082 7.1 6 1.2 1.1
"die" 24,467 21 10 2.1 11
"der" 26,779 22 10 2.2 12

pos="VVPP" 17,770 58 52 1.1 6.1
pos="VVFIN" 35,628 59 48 1.2 11
pos="ADJA" 54,534 64 48 1.3 16

/.*sich.*/ 7,686 258 257 1 0.2
/.*und.*/ 22,589 256 254 1 2.7
/.*s.*/ 212,862 313 274 1.1 39

Table 17: Runtime (in seconds) of queries in group E with and without DISTINCT.

Annis query Results DISTINCT Ratio
Yes No (×106)

1 lemma = "müssen" & pos = /VV.*/ & pos = "$." & #1.*#2 & #2.*#3 4,934,027 7.9 2.2 2.2
2 pos = /VM.*/ & pos = /VV.*/ & pos = "$." & #1.*#2 & #2.*#3 19,880,160 55 7.3 2.7
3 pos = /VM.*/ & pos = /VV.*/ & pos = /\$,/ & #1.*#2 & #2.*#3 21,195,563 49 8 2.7
4 lemma = "wollen" & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 32,066,327 237 13 2.5
5 pos = /VM.*/ & pos = /VV.*/ & pos = /(\$.|\$,)/ & #1.*#2 & #2.*#3 53,381,806 *45 20 2.6
6 pos = /VM.*/ & pos = /VV.*/ & pos = /\$.*/ & #1.*#2 & #2.*#3 53,381,806 44 21 2.5
7 pos = /VM.*/ & pos = /VV.*/ & pos = /\$./ & #1.*#2 & #2.*#3 53,381,806 *45 20 2.6
8 lemma = "müssen" & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 56,465,383 *614 21 2.6
9 lemma="müssen" & pos!="VV.*" & pos="$." & #1 .* #2 & #2 .* #3 61,399,410 591 23 2.7

10 pos = /VM.*/ & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 230,726,493 >1 hour 107 2.2
11 pos = /VM.*/ & pos = /VV.*/ & pos = /.*/ & #1.*#2 & #2.*#3 383,753,400 >1 hour *175 2.2

72

6.6 Influence of optimization strategies

In order to measure the influence of each optimization strategy, we construct a workload of 10,000
randomly chosen queries from our test set. We replicate the original distribution of the queries in the
random workload. As we have seen in section 6.2.3, some queries need more than 60 seconds to evaluate
on MonetDB when the corresponding SQL query is generated using the nested/FROM template. Because
it is not possible to specify a query timeout in MonetDB, we do not include these queries in the random
workload. Specifically, we disregard query 184 of group D, the queries 192 to 202 of group E, and the
query 223 of group F. We also do not include the queries 214 and 217 in the workload because the
corresponding SQL query created by the nested/FROM or nested/WHERE templates causes a syntax
error on MonetDB. Altogether, the generated workload consisted of 209 unique queries.

Figure 34 shows the evaluation times of the entire workload that we obtain by successively activating
the previously described optimizations techniques to improve the performance of Annis. The first bar
to the left depicts the time required by the initial port of Annis to MonetDB using the nested/FROM
template to generate SQL queries. For the remaining tests, the SQL queries are generated using the CTE
template. The third bar shows the runtime using the BAT-aware version of pcre.match and the fixed
prefix to improve the performance of regular expression searches, or by replacing a regular expression
with an exact string match. For the fourth test, we additionally remove the DISTINCT operator from the
SQL query if the Annis query does not contain a dominance operation. The last two bars show how the
system performs on a sorted table. In both cases the node table is sorted on the span attribute. The
node_annotation table is sorted on the value attribute for the fifth bar and on the name attribute for the
last bar on the right.

Nested/FROM CTE
Regular

expressions
Optional

DISTINCT
Sorted

by value
Sorted

by name

H
ou

rs

0

2

4

6

8

10

9 hours
43 minutes

7 hours
20 minutes

33 minutes 32 minutes 30 minutes 25 minutes

Figure 34: Influence of different optimization strategies.

Using the CTE template instead of the nested/FROM template to generate SQL queries reduces the
runtime of the entire workload by about 25%. However, this difference is mostly caused by the ten queries
listed in Table 18 which are improved by more than one second by the CTE template. The distribution
of the performance gain of the remaining 199 queries is shown in Figure 35. There are ten queries which
are faster, up to 85 milliseconds, when the nested/FROM template is used. As we have discussed in
section 6.2.3, the query plans generated for these queries using the nested/FROM template evaluate a
highly selective search term first and make better use of an additional thread than the query plan that
is generated for the CTE template. Another cluster can be found starting at 90 milliseconds. These
queries consist of two regular expression searches linked by an Exact Cover operation, i.e., the queries

73

labeled C in Figure 21, or two regular expression and one exact match search linked by two Exact Cover
operations, i.e., the queries labeled B in Figure 23.

Table 18: Queries improved by the CTE template by more than one second.
Query Nested CTE ∆

178 lemma = "müssen" & lemma = "in" & #1.*#2 6.7 0.2 6.4
185 pos = /VM.*/ & pos = /VV.*/ & #1.*#2 27.8 5.0 22.8
189 pos = /VM.*/ & pos = /VV.*/ & pos = /\$./ & #1.#2 & #2.*#3 53.7 6.9 46.8
195 cat="S" & "umfaßt" & #1 > #2 8.1 0.3 7.9
201 pos="NE" & cat="S" & pos="PRELS" & pos="VVFIN" & #2>[func="HD"]#4 & #1$#2 & #3$#4 1.6 0.4 1.3
204 /[Jj]e/ & "desto" & #1 $* #2 & morph="Comp" & morph="Comp" & #1 . #3 & #2 . #4 11.5 3.3 8.1
206 cat=/(S|VP)/ & lemma="machen" & #1 >edge #2 8.7 1.6 7.1
207 cat="S" & pos="VVFIN" & #1 _i_ #2 12.7 1.0 11.7
208 cat = "S" & pos = /VM.*/ & pos != /VV.*/ & #1>*#2 & #1>*#3 40.5 5.8 34.7
209 tok & cat="VP" & #1 . #2 & tok & #2 _i_ #3 & #1 $ #3 6.1 1.7 4.4

Milliseconds

Q
ue

rie
s

0

10

20

30

40

50

−100 0 100 200 300 400 500 600 700 800

Figure 35: Performance gain of the CTE template.

The most dramatic improvement is achieved by optimizing regular expression searches. This result is
not surprising given that 143 queries, more than two thirds, contain one or more regular expression.
Figure 36 shows the distribution of the performance gain of these queries. There are four clusters that
can be discerned, which correspond to the number of regular expressions found in the query and the type
of search term using a regular expression. The first cluster, at 2.3 seconds, consists of queries containing
one pos or lemma annotation search using a regular expression. The next cluster, at 2.7 seconds, contains
regular expression text searches. The cluster at 4.5 seconds contains two pos or lemma regular expression
annotation searches. The last cluster, starting at 4.9 seconds, contains a pos or lemma annotation search
and a text search using regular expressions. There are also three outliers visible. The query which shows
no improvement uses a regular expression search on the non-existent token annotation layer. The query
at 1.2 seconds contains a regular expression search on the cat layer. Finally, the query at 6.7 seconds
contains three regular expression pos annotation searches. The runtime of a query containing a regular
expression is reduced by 95% on average, or 2.4 seconds for every regular expression found in the query.

The improvement gained by removing the DISTINCT operator from the SQL query is rather modest, even
though this optimization can be applied to 189 queries, or 90% of the test set. However, as we have
discussed in section 6.5, the effect of the DISTINCT operator is only noticeable for queries returning many
results. We have removed most of these queries, namely those in group E, from the test set because they
do not finish within 60 seconds using the nested/FROM template.

Finally, sorting the node and node_annotation tables reduces the time required to evaluate the entire
workload by another 7% if the node_annotation table is sorted on the value attribute and 23% if it is
sorted on the name attribute. There are three queries which are negatively effected by sorting. These are

74

Seconds

Q
ue

rie
s

0

5

10

15

20

25

0 1 2 3 4 5 6 7

Figure 36: Performance gain of regular expressions searches.

Sorted by value

Milliseconds

Q
ue

rie
s

0 50 100 150 200

0

20

40

60

80

100

Sorted by name

Milliseconds

Q
ue

rie
s

0 50 100 150 200

0

20

40

60

80

100

Figure 37: Performance gained by sorting.

listed in Table 19. We have already noticed in section 6.4 that the trivial query lemma is slower on the
sorted tables. We do not know why these queries are slowed down; if anything their performance should
improve. Figure 37 shows how the improvement gained by sorting is distributed. If the node_annotation

table is sorted on the value attribute, the majority of queries either show no or only a very modest
improvement. One query is improved by 81 milliseconds, but the mean amount is 11 milliseconds. If the
node_annotation table is sorted on name, the mean improvement is 46 milliseconds and 100 queries are
faster by a larger amount. Indeed, many of the queries which gain less than 10 milliseconds have only
one search term. These queries are already very fast.

Altogether we were able to achieve an improvement by a factor of 23 from the initial port of Annis to
MonetDB. Figure 38 shows the distribution of the runtime of the queries in our test set. Except for four

Table 19: Queries impaired by sorting (ms).

Query Unsorted Sorted Difference
value name value name

37 lemma 26 35 37 -8.8 -11
38 cat="S" 31 31 40 -9.9

209 tok & cat="VP" & #1 . #2 & tok & #2 _i_ #3 & #1 $ #3 1685 1944 1772 -259 -87

75

queries requiring between 0.8 and 1.8 seconds, every query in our test set finishes in less than 0.5 seconds.
Optimizing regular expressions has the greatest effect for two reasons. They are used by many queries
and the default implementation of matching regular expressions is particularly inefficient. The main
utility of the CTE template is to make the runtime behavior of queries predictable. The runtime of a
SQL query generated using the nested templates very often depends on the selectivity of a search term.
For SQL queries generated using the CTE template, the runtime mostly depends on the number and
type of search terms and on the linguistic operations contained in the query. In particular, except for
queries which return a very large result set, the CTE template enables us to evaluate any query in well
under 60 seconds. Queries returning many results can be improved by removing the DISTINCT operator
from the SQL query if this is possible. Sorting the tables on string attributes improves the performance
of a wide range of queries by a small amount.

Seconds

Q
ue

rie
s

0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

50

Figure 38: Distribution of query runtime.

6.7 Comparison with PostgreSQL

As a final test, we compare the performance of Annis on MonetDB to the implementation on PostgreSQL.
It is worth repeating, that PostgreSQL evaluates the queries on the materialized schema, whereas
MonetDB is able to achieve the stated performance on the normalized source schema. This entails
an substantial reduction in the disk space required to store the TIGER Treebank by MonetDB.

6.7.1 Disk space consumption

Table 20 shows the disk space required to store the TIGER Treebank in MonetDB and PostgreSQL.
MonetDB uses 396 MB, which is less than what is needed by PostgreSQL to store the source tables
without indexes. The difference can be explained by unallocated space in the PostgreSQL database page
layout that is used to insert new items in the table. Conversely, MonetDB stores insertions and deletions
in separate BATs und the original BAT is left unchanged. It can therefore be stored densely. We do not
require additional space for indexes in MonetDB. Compared to the materialized schema in PostgreSQL,

Table 20: Disk usage (in MB) of the TIGER Treebank in PostgreSQL and MonetDB.

Tables Indexes Total

PostgreSQL (Source schema) 525 1407 1932
PostgreSQL (Materialized schema) 1201 6707 7908

MonetDB (Source schema) 396 396

76

the space required by MonetDB to store the TIGER Treebank is reduced by a factor of twenty. However,
as we have seen in section 6.5, some queries require a substantial amount of temporary disk space during
their evaluation.

6.7.2 Individual query performance

Figure 39 shows the performance of each individual query. Black diamonds indicate the runtime on
MonetDB and blue circles the runtime on PostgreSQL. The charts are ordered according to the query
index in appendix B.1. The first impression we get from the charts is that there are many queries which
are faster on PostgreSQL than they are on MonetDB. Indeed, there are 120 queries, more than half, that
perform better on PostgreSQL and only 104 queries that are faster on MonetDB. However, the second
fact we notice is that in every group the slowest runtime is from an evaluation of a query on PostgreSQL.
As we will see in the next section, the tradeoff between slow and faster queries by MonetDB is much
better for overall performance.

It is often possible to deduce the type of query from the comparison between the performance on MonetDB
and PostgreSQL. For group A, PostgreSQL is faster for highly selective annotation searches. MonetDB
is faster for every other kind of search term, i.e., text searches, annotation searches with a low selectivity,
and regular expression searches with either no fixed prefix or a prefix of a low selectivity. Consequently,
PostgreSQL is faster than MonetDB for most of the queries in group B because they contain at least one
highly selective lemma annotation search. MonetDB is faster for queries that contain a regular expression
which is not replaced by an exact string match. PostgreSQL performs best, in comparison to MonetDB,
for the queries in group C. Again, many of these queries contain a highly selective lemma annotation
search. The query that gains most by MonetDB contains two regular expression without a fixed prefix.
Discounting the invalid queries in group E, MonetDB performs best, compared to PostgreSQL, on the
queries in group D. The four queries which are faster on PostgreSQL again contain a highly selective
lemma annotation search. Indeed, these are the queries B1−3 and the query in between them in Figure 24,
which also perform better using the nested/FROM template on MonetDB. The remaining queries are
faster on MonetDB, sometimes by an order of magnitude. The two queries in group E which are faster
on PostgreSQL contain an annotation search that specifies a non-existant annotation value. These are
the queries labeled B which we identified in Figure 26. PostgreSQL quickly realizes this fact and aborts
the entire query. However, MonetDB evaluates the other two search terms in the queries as we have
discussed in section 6.2.3. Most of the remaining queries in group E do not finish within 60 seconds
on PostgreSQL. Finally, the queries in group F present a mixed picture. The most apparent feature
by which we can distinguish queries that perform better on one system or the other is the number of
returned results. Excluding two outliers at 192 and 810, the mean number of results of queries which
are faster on PostgreSQL is 8.3. Queries which are faster on MonetDB return more than 9,000 result on
average, excluding one outlier that returns more than 200,000 results.

6.7.3 Performance on a random workload

We measure the overall performance of Annis on both systems using two more workloads of 10,000
randomly chosen queries. The first workload contains every query in our test set, including the long-
running, invalid queries of group E. To evaluate these 10000 queries, MonetDB requires 5 hours and
31 minutes. PostgreSQL requires 10 hours and 35 minutes. Figure 40 shows how much time is spent
processing the queries of a particular group. PostgreSQL spends 85% of the entire time to evaluate the
queries in group E. Most of these are aborted after 60 seconds. For MonetDB, this figure rises to 93%.
Because we cannot abort queries on MonetDB, much of this time is spent evaluating two queries which
require 2 and 3 seconds to finish respectively. Clearly, the invalid queries skew the result considerably.
They are overrepresented in the workload and MonetDB is at an disadvantage. Even though it can
evaluate these queries faster, it cannot abort them, but has to process them until they are finished.

We therefore construct a second workload of 10,000 queries for which we exclude the invalid queries of
group E and run this workload on the server and on the laptop. The outcome is shown in Figure 41.

77

Group A

Query index

S
ec

on
ds

 (
lo

g)

●
●●●●●●●●●

●
●

●

●●●●

●

●●●●

●●

●●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●●●●●●●●●●●

●

●
●●

●●●●

●

●

●

●

●

●

●

●●●●

●

1 10 19 28 37 46 55 64 73

0.01

0.1

1

10

60 ●MonetDB PostgreSQL

Group B

Query index

S
ec

on
ds

 (
lo

g)

●

●

●
●

●●
●

●●

●●
●

●
●

●
●

●●
●

●●●●

●

●●

●

●
●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●
●

●
●●●

●●
●●

●

●

●
●●

75 83 91 99 107 115 123 131 139

0.01

0.1

1

10

60 ●MonetDB PostgreSQL

Group C

Query index

S
ec

on
ds

 (
lo

g)

● ● ●

●

●

●

●
● ● ●

●

● ●

●
●

●
●

●

●
●

●
● ●

●

● ● ●

●

144 150 156 162 168

0.01

0.1

1

10

60 ●MonetDB PostgreSQL

Group D

Query index

S
ec

on
ds

 (
lo

g)

●
●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

172 174 176 178 180 182 184 186

0.01

0.1

1

10

60 ●MonetDB PostgreSQL

Group E

Query index

S
ec

on
ds

 (
lo

g)

●

●
●

●

●

● ● ● ● ● ● ● ● ● ●

188 190 192 194 196 198 200 202

0.01

0.1

1

10

60

●MonetDB PostgreSQL

DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC

Group F

Query index

S
ec

on
ds

 (
lo

g)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

203 206 209 212 215 218 221 224

0.01

0.1

1

10

60 ●MonetDB PostgreSQL

Figure 39: Comparison of individual queries on MonetDB and PostgreSQL.

78

Group A Group B Group C Group D Group E Group F

MonetDB PostgreSQL

M
in

ut
es

 (
lo

g)

1

10

60

300

600

2

6 6

2

308

8

23
32

7

13

546

14

Figure 40: Comparison of a random workload on MonetDB and PostgreSQL by query group.

On the server, MonetDB requires less than a third of the time that PostgreSQL needs to evaluate the
workload. On the laptop, the result is even more impressive. MonetDB requires just 15% more time on
the laptop than on the server. PostgreSQL on the other hand is more than three times slower. As a
result, MonetDB beats PostgreSQL on the laptop by an order of magnitude.

Even though they are more queries that are faster on PostgreSQL in absolute terms, this advantage is
outweighed by the overall performance of MonetDB. As an example, consider the queries in group C.
Only four queries in this group are clearly faster on MonetDB than on PostgreSQL, one of which by
on order of magnitude. Conversely, five queries in this group are faster by on order of magnitude on
PostgreSQL, and there are ten other queries where PostgreSQL has an advantage of at least factor five.
Yet, as Figure 40 shows, MonetDB beats PostgreSQL overall by a minute in this group. As Figure 38
shows, the three slowest queries on MonetDB require 1.1, 1.6, and 1.8 seconds respectively to evaluate,
excluding the invalid queries of group E. In contrast, there are 27 queries that require between one and
13 seconds on PostgreSQL.

Server Laptop

MonetDB
PostgreSQL

H
ou

rs

0

1

2

3

4

5

6

25 minutes

1 hour
37 minutes

29 minutes

5 hours
47 minutes

Figure 41: Performance of a random workload on MonetDB and PostgreSQL without invalid queries.

79

7 Conclusion

The goal of this work was to port the Annis query language to MonetDB and to evaluate Annis queries
on the original, normalized source tables so as to retain the flexibility of a normalized database schema.
In order to measure the performance of the port and compare it to the implementation on PostgreSQL,
we collected 224 unique test queries from an Annis installation at the linguistics department of the
Humboldt Universität zu Berlin. These queries were evaluated on the TIGER Treebank.

Our prototypical port supports the entire Annis query language, except for the ANNOTATE and
MATRIX query functions and the selection of subcorpora using metadata. On a server, it is three
times faster than the implementation on PostgreSQL. On a consumer laptop, it is only somewhat slower
than on the server, whereas the performance of PostgreSQL suffers considerably. Accordingly, the port
on MonetDB is ten times faster than the PostgreSQL version on a laptop. This speed improvement is
accompanied by a reduction of the space required to store the database on disk by a factor of twenty.

Just a few modifications were necessary to adapt the SQL code generated by Annis to MonetDB. In
fact, we only had to change the evaluation of boolean predicates and expose a MAL function to the
SQL layer in order to implement regular expression searches. However, the performance of this minimal
port was greatly unsatisfying. Even simple queries would require a comparatively long time to finish
because of the creation and processing of very large intermediate results during their evaluation. The
performance of the minimal port was also very unpredictable. Structurally similar queries would yield
widely diverging runtimes depending on the selectivity of the search term that by chance was evaluated
first. Furthermore, the evaluation of regular expression searches was very inefficient. Each value of an
attribute was tested individually in a loop in the MAL program which involved a lot of overhead.

We used four strategies to improve the performance of Annis on MonetDB. First, we modified the
generated SQL code so that MonetDB generates a query execution plan that greatly reduces the size of
intermediates. Second, we optimized regular expression searches by processing the tested attribute in a
C function and limiting the range of tested values. Third, we improved the performance of string searches
by sorting. Fourth, we removed an unnecessary deduplication step in order to improve the performance
of queries that return a large number of results.

Originally, an Annis query function used a nested subquery in the FROM clause to compute the solutions
of an Annis query. For these queries, MonetDB produced a join plan which evaluated a binary linguistic
constraint by joining multiple copies of the entire node table instead of restricting it first to those tuples
selected by a search term. We modified the SQL code to compute candidates for each search term in
an individual common table expression in a WITH clause. Binary operators were evaluated in a separate
common table expression. We called this approach to the generation of SQL queries the CTE template.
It effectively pushed down the computation of search term matches in the query execution plan, thereby
reducing the size of intermediate results considerably. This change decreased the time required to evaluate
a random workload by 25%. However, the improvement was not uniform across the queries in our test
set. Many of them only gained a little more than 100 milliseconds or were not improved at all. Yet,
there were also ten queries which were many seconds faster when the CTE template was used, and two
queries which previously did not finish within a minute could be evaluated in less than a second.

Another advantage of the CTE template was an increased predictability of the performance of a query.
The influence of the selectivity of a query’s search terms, and more importantly their order, was greatly
reduced. Using a nested subquery, the performance of an Annis query would often have depended on
the selectivity of the search term that was evaluated first, a factor which we found very hard to predict,
let alone control. Indeed, we found the decisions made by MonetDB, in which order to evaluate the
predicates of a SQL query, extremely opaque. There were a few queries, namely those containing a
highly selective search term in an indirect precedence operation, that were slowed down by the CTE
template, even though the size of their intermediate results was reduced. For these queries, MonetDB
used a second thread more effectively when a nested subquery was used. However, as the selectivity of
the search term decreased, and the size of intermediate results increased, the time required to process
these intermediates dominated the execution time. In this case, the CTE template was faster because it

80

keeps the size of intermediates small. Using the CTE template, the runtime of a query largely depended
on the number and type of its search terms, the binary linguistic operations used to join these search
terms, and on the number of returned results. Evidently, the latter factor is correlated to the selectivity
of the query’s search terms, but for queries which do not return a large result set, it was not the deciding
factor.

The evaluation of regular expression searches was a major performance bottleneck. MonetDB created
a loop in the MAL program to test every value of an attribute individually. Because Annis implicitly
anchors regular expressions at the start and at the end, we could, for many queries in our test set,
completely side-step the costly evaluation of regular expressions, by replacing them with an equivalent
exact string match. However, this was only possible if the implicitly anchored regular expression matched
exactly one word. We improved the performance of genuine regular expressions by making the function
evaluating them BAT-aware, i.e., moving the loop from the MAL program into a C function. This
modification to the MonetDB kernel resulted in a performance gain of an order of magnitude. Regular
expressions starting with a fixed prefix could further be improved by constructing a lower and upper
bound from the prefix and restricting the evaluation of the attribute to values within this range. This
provided another performance gain of a factor of two to seven depending on the type and selectivity of the
search term. Optimizing regular expression searches had the greatest effect on the overall performance for
three reasons. First, two thirds of the queries in our test set contained at least one regular expression and
benefited from their optimization. Second, many of them could be replaced with an exact string match,
which for text searches was 500 times faster. Third, we were able to greatly increase the performance of
the remaining, genuine regular expressions, up to a factor of 70 for text searches.

Sorting the node table on the span attribute and the node_annotation table on the name attribute reduced
the time to evaluate a random workload by 23%. About two thirds of the queries in our test set
benefited from sorting the tables on a string attribute. Roughly half of them were improved by about
80 milliseconds. The most dramatic performance gain was experienced by regular expression searches
that have a highly selective fixed prefix. These queries were almost as fast as an exact string match
on a sorted table. We had expected that sorting the node_annotation table on the value attribute
should result in a bigger improvement than sorting it on the name attribute, because the former has a
higher selectivity and in most cases uniquely identifies the latter. However, the attribute on which the
node_annotation table was sorted not only influenced the time required to evaluate string predicates, but
also affected other operations in the query. As a result, regular expression annotation searches with a
fixed prefix were faster if the table was sorted by the annotation name rather than the annotation value.

Finally, some of the queries returned a very large number of results, ranging from tens to hundreds
of million matches. We suspected that the user did not fully understand the Annis data model when
they formulated these kind of invalid queries. For queries returning many results, the evaluation of the
DISTINCT operator, i.e., the explicit deduplication of the result set, was the dominating factor. Because
we evaluated Annis on the normalized source schema, we were able to avoid this explicit deduplication
step in many cases. By removing the DISTINCT operator, we reduced the time required to evaluate these
long-running queries dramatically, from many minutes or hours to a few seconds or minutes. Indeed,
without the DISTINCT operator, the runtime was proportional to the size of the result set. However, most
queries were unaffected by this improvement because the number of results they return was quite small.
An exception were the trivial queries node and tok, as well as annotation searches which do not specify
a value, such as lemma.

Altogether, we improved the performance of the initial port by a factor of 23 for our test set. Every
query in our test set could be evaluated in less than two seconds on MonetDB, excluding the previously
mentioned invalid queries. Indeed, there were only six queries that require more than 0.5 seconds to
evaluate. Those returning up to 60 million results could be evaluated in less than 25 seconds, and
queries returning up to 380 million results in less than three minutes.

Our implementation of Annis on MonetDB compared favorably to Annis running on PostgreSQL. On a
server with 48 GB of main memory, MonetDB could evaluate a random workload of 10,000 queries in
25 minutes. PostgreSQL was more than three times slower and required 97 minutes for the same workload.
On a laptop with 4 GB of main memory, MonetDB was only 15% slower, requiring a little less than half

81

an hour to evaluate the workload. PostgreSQL required almost six hours, which is a difference by an
order of magnitude. Furthermore, a number of queries with many results, which required substantially
longer than a minute on PostgreSQL, finished within a few seconds on MonetDB. Because we evaluated
queries directly on the source tables in MonetDB and did not use indexes, the size of the database on
disk was greatly reduced. Whereas PostgreSQL needed almost 8 GB to store the TIGER Treebank,
MonetDB required less than 400 MB.

The port was instructive insofar as it exposed a few bugs in the MonetDB query processor and a long-
standing bug in PostgreSQL related to the processing of regular expressions.

We did not implement any of the corpus management or selection facilities found in Annis and assumed
that the database contained only one corpus. The obvious next step is to implement these features as well
as the ANNOTATE and MATRIX query functions, in order to use the implementation on MonetDB
as a back-end of the Annis web interface. We expect that the remaining features can be implemented
similarly to COUNT using common table expressions in a WITH clause.

Even though the TIGER Treebank consists of comparatively many tokens, it is not the most complex
corpus in Annis. For example, it does not contain pointing relations. Furthermore, the queries in our
test set were not overly complex, having a maximum number of four search terms. We primarily chose
the TIGER Treebank as a test set because it allowed us to collect queries from actual users of the system
and construct a realistic test workload. It would be instructive to test the limits of Annis on MonetDB
using a larger or more complex corpus and queries consisting of more search terms.

We would also like to test our assumption that the evaluation of Annis queries on the normalized source
tables improves the flexibility of the data model. After all, this was one of the main motivations of the
port to MonetDB. The addition of multiple precedence orders can provide an interesting test case. This
feature would allow Annis to support multiple token orders, e.g., for error-annotated learner corpora, or
different levels of precedence, e.g., syllables as subtokens. Especially the former feature is often requested
by Annis users. Multiple precedence levels could be implemented by extracting the attributes left_token
and right_token from the node table and storing them in an additional precedence table along with a
new attribute that discriminates the precedence level.

However, compared to other linguistic query languages, the major feature lacking in Annis is meaningful
support of negation. As we have seen in the test queries, the current implementation of existential value
negation is confusing to users.

To summarize, we have shown that a main-memory, column-oriented database system is a good foun-
dation to implement a linguistic query language. We have achieved a considerable gain in performance
compared to a traditional database system and at the same time reduced the resource requirements in
terms of disk space and main memory size.

82

A Additional Annis features

In this appendix we list Annis features which we did not implement on MonetDB and describe the
necessary steps to port them.

A.1 The ANNOTATE query function

The ANNOTATE(q, C, left, right[, offset, limit]) query function returns for each solution S to a
query q in a set of corpora C an annotation graph fragment consisting of every text span overlapping a
span in S with left tokens as left context and right tokens as right context. Formally, if A = (V,E) is an
annotation graph, the annotation graph fragment for a solution S with context left and right consists
of the node set

V ′ =
⋃
s∈S
{v ∈ V : v overlaps a token from the interval [mins − left,maxs + right]}

and the edge set
E′ = {(v, w) ∈ E : v, w ∈ V ′} .

The optional parameters offset and limit are used to paginate the output of the ANNOTATE query
function. The solutions are sorted, the first offset solutions are skipped and the annotation graph
fragments for limit solutions are returned.

The ANNOTATE function can be implemented by wrapping the SQL query computing the solutions
S to q as a subquery and then retrieving the overlapping tokens of the annotation graph fragment over
S in the outer query. This requires a modification of the SELECT clause of the inner query as shown
in Listing 12. In addition to the node IDs, the attributes text_ref, left_token, and right_token are
selected in order to compute overlapping text spans. The outer query is depicted in Listing 13. The
PostgreSQL-specific ARRAY constructor is used to gather the node.id attributes of the spans in a query
solution into an array in order to create a key, grouping all the spans of a retrieved annotation graph
fragment (line 1). The solutions are sorted and only those specified by the parameters offset and limit
are returned by the wrapped query (line 6). If no pagination is requested this line can be skipped. The
construction of the annotation graph requires the tables node, rank, component, node_annotation, and
edge_annotation (lines 2 and 14). Some additional information may be retrieved to provide context
for the web frontend (line 3). Finally, the output of the query is ordered by the key identifying an
annotation graph fragment and the pre-order value to ease the reconstruction of the annotation graph
in the application (line 21).

The result set returned by this query can be transformed into an annotation graph using an algorithm
that is similar to the gXDF reconstruction of a DDDquery result described in [Vit04]. A simple walk
through the result set represents a pre-order traversal of the graph we want to reconstruct. We keep
track of the nodes and edges already visited as well as their annotations to skip through the result set if
possible. Once we encounter a new key, we know that the current annotation graph fragment is complete
and start a new one.

1 SELECT DISTINCT

2 node1.id AS id1, node1.text_ref AS text1,

3 node1.left_token - left AS min1, node1.right_token + right AS max1,

4 . . .,
5 nodeN.id AS idN, nodeN.text_ref AS textN,

6 nodeN.left_token - left AS minN, nodeN.right_token + right AS maxN

Listing 12: SELECT clause for the inner query of the ANNOTATE query function.

83

1 SELECT DISTINCT ARRAY[solutions.id1, . . ., solutions.idN] AS key,

2 facts.*,

3 corpus.path_name

4 FROM (

5 SQL subquery to compute the solutions to q with a modified SELECT clause
6 ORDER BY id1, . . ., idN OFFSET offset LIMIT limit
7) AS solutions,

8 (

9 node

10 JOIN rank ON (rank.node_ref = node.id)

11 JOIN component ON (rank.component_ref = component.id)

12 LEFT JOIN node_annotation ON (node_annotation.node_ref = node.id)

13 LEFT JOIN edge_annotation ON (edge_annotation.rank_ref = rank.pre)

14) AS facts,

15 corpus

16 WHERE (facts.text_ref = matches.text1 AND

17 facts.left_token <= solutions.max1 AND facts.right_token >= solutions.min1)

18 OR . . .
19 OR (facts.text_ref = matches.textN AND

20 facts.left_token <= solutions.maxN AND facts.right_token >= solutions.minN)

21 ORDER BY key, facts.pre

Listing 13: SQL query template for the ANNOTATE query function.

The ANNOTATE query function extends the inner query with LIMIT, OFFSET, and ORDER BY clauses to
paginate the output. Unfortunately, MonetDB does not support these clauses for nested queries, view
definitions, or common table expressions. It is therefore necessary to temporarily materialize the result
of the nested query. The materialized result can then be used in place of the nested subquery in the outer
SQL query of the ANNOTATE function. The temporary result has to be deleted once the query has
finished. To ensure this, we wrap the whole process in a transaction that is rolled back after completion.
The procedure is illustrated in Listing 14.

Furthermore, the ANNOTATE query function uses the tuple of node IDs that represents a match to an
AQL query as a key to group the nodes of the annotation graph of the match. This key is encoded as an
array of node IDs, e.g., ARRAY[solution.id1,. . ., solution.idN]. This syntax is PostgreSQL-specific.
In MonetDB, we simply return the node ID columns in the outer query and create the key in application
code. The array functionality of PostgreSQL is also used for the corpus.path_name attribute. For each
document of a corpus this attribute stores the names of the ancestor documents up to the corpus root.
When exported from PostgreSQL, the textual representation of this attribute is {document name, parent
name, . . . , corpus name}. This value is stored as a VARCHAR attribute in MonetDB and converted to an
array in application code.

1 BEGIN;

2 CREATE TABLE solutions AS

3 SQL query to compute solutions with a modified SELECT clause
4 ORDER BY id1,. . ., idN OFFSET offset LIMIT limit

5 WITH DATA;

6 SQL query for the ANNOTATE query function
7 accessing the previously materialized solutions table
8 ROLLBACK;

Listing 14: SQL query template for the ANNOTATE query function on MonetDB.

84

A.2 The MATRIX query function

The MATRIX(q, C) query function retrieves span and corpus annotations for each span that is returned
as part of a solution to the query q in a set of corpora C. The result is returned as a table in an ARFF file.
This table contains a row for each solution S to the query. For each span in a solution there exists a set of
columns containing the internal node ID of the span, the text covered by it, as well as one column for any
annotation key that is used for a span at this position in any solution. These columns are grouped by the
span position in the solution tuple. Additionally, there is one column for any corpus annotation key that
is attached to any document containing solutions to q. Cells in the table may be empty if there is no span
at this position in the solution, i.e., if the query consists of multiple alternatives or if the span, or the
document containing the span, does not have an annotation specified by the column. An example of such
a table is provided in Listing 15 for the query cat="S" & #1:tokenarity=1,6 & pos="VVFIN" & #1 > #2

evaluated on the PCC corpus. Spans at the first position have only one annotation (line 5), spans
at the second position have three annotations (lines 8 through 10). There are no corpus annotations.
The table is constructed with the help of the SQL query shown in Listing 16. It wraps the SQL
query computing the solutions to q as a subquery and returns one row for each span that is part of a
solution to q (line 15). The PostgreSQL-specific ARRAY constructor is used to group spans belonging to
one solution (line 1). Annotations belonging to a span are aggregated using the PostgreSQL-specific
aggregate function array_agg in order to collapse multiple rows for one span into one row (line 4). The
same is done for corpus annotations.

Three changes are necessary to adapt the MATRIX query function to MonetDB: The aggregation of
node and corpus annotations must be removed from the SQL query and recreated in the Java application
code. Instead of constructing a key array, the node IDs of a solution can be returned in multiple columns.
The call to substr has to be changed to substring.

1 @relation name

2
3 @attribute #1_id string

4 @attribute #1_span string

5 @attribute #1_tiger:cat string

6 @attribute #2_id string

7 @attribute #2_span string

8 @attribute #2_token_merged:lemma string

9 @attribute #2_token_merged:morph string

10 @attribute #2_token_merged:pos string

11
12 @data

13
14 ’357’,’Wunder gibt es immer wieder’,’S’,’231’,’gibt’,’geben’,’3.Sg.Pres.Ind’,’VVFIN’

15 ’949’,’obwohl sie ihnen gegenüber sitzen’,’S’,’766’,’sitzen’,’sitzen’,’3.Pl.Pres.Ind’,’VVFIN’

16 ’928’,’was Jugendliche wollen und brauchen’,’S’,’751’,’brauchen’,’brauchen’,’3.Pl.Pres.Ind’,’VVFIN’

17 ’981’,’Die glänzten diesmal noch mit Abwesenheit’,’S’,’513’,’glänzten’,’glänzen’,’3.Pl.Past.Ind’,’VVFIN’

18 ’390’,’wie sie die Chance verwerten’,’S’,’66’,’verwerten’,’verwerten’,’3.Pl.Pres.Ind’,’VVFIN’

Listing 15: ARFF file constructed from the output of the MATRIX query function.

A.3 Corpus selection and metadata

A user can select multiple root corpora on which to perform an Annis query q. Thus, the SQL query
computing the solutions to q shown in Listing 2 needs to be restricted to those spans found in the cor-
pora specified by the user and their child documents. A SQL query that computes the solutions found
in a set of k root corpora is shown in Listing 17. The number of documents in a corpus can be consid-
erably large, e.g., the TIGER corpus contains nearly 2000 documents. Testing the node.corpus_ref

attribute against that many values incurs an unnecessary overhead. Therefore the node table also
contains the toplevel_corpus attribute which for each span points to the root corpus containing the
document to which the span belongs. This attribute can be compared against the list of root corpora

85

1 SELECT ARRAY[solutions.id1, . . ., solutions.idN] AS key,

2 node.id AS id,

3 min(substr(text.text, node.left + 1, node.right - node.left)) AS span,

4 array_agg(DISTINCT coalesce(node_annotation.namespace || ’:’, ’’)

5 || node_annotation.name || ’:’ || node_annotation.value) AS annotations,

6 array_agg(DISTINCT coalesce(corpus_annotation.namespace || ’:’, ’’)

7 || corpus_annotation.name || ’:’ || corpus_annotation.value) AS metadata

8 FROM (

9 SQL subquery to compute the solutions to q
10) AS solutions,

11 node

12 JOIN text ON (text.id = node.text_ref)

13 LEFT JOIN node_annotation ON (node_annotation.node_ref = node.id)

14 LEFT JOIN corpus_annotation ON (corpus_annotation.corpus_ref = node.corpus_ref)

15 WHERE node.id = solutions.id1 OR . . . OR node.id = solutions.idN
16 GROUP BY key, facts.id, span

Listing 16: SQL query template for the MATRIX query function.

specified by the user (lines 9 through 11). Additionally, corpus names provided by the frontend need
to be mapped to corpus primary keys. This can be performed in a common table expression in a WITH

clause (lines 1 through 3). If the SQL query is used as a subquery to compute the result of a query
function, the WITH clause needs to be moved to the outer query.

A user may also restrict the search to specifically annotated documents by listing meta annotations in
an Annis query. A SQL query that only searches the child documents of a set of k root corpora that
match a set of l corpus annotations is shown in Listing 18. In this case, the node.corpus_ref attribute is
compared against the list of matching documents (lines 21 through 23). A test on node.toplevel_corpus

is superfluous but may be added for performance reasons. The list of documents below the given
root corpora that match the specified meta data is computed in a common table expression in a WITH

clause (lines 1 through 15).

The PostgreSQL implementation of Annis uses horizontal partitioning to store the data of one corpus
in a dedicated facts table. Only the parent facts table is referenced in the generated SQL queries.
PostgreSQL transparently evaluates the query on the appropriate child table using the toplevel_corpus

attribute as a discriminator. MonetDB does not support horizontal partitioning. In order to support
multiple corpora in MonetDB, one option is to store the data of every corpus in one set of tables and rely

1 WITH corpora AS (SELECT id

2 FROM corpus

3 WHERE name IN (corpus1, . . ., corpusk))

4 SELECT DISTINCT node1.id AS id1, . . ., nodeN.id AS idN
5 FROM corpora,

6 node AS node1 JOIN additional tables required to evaluate the first search term
7 . . .
8 node AS nodeN JOIN additional tables required to evaluate the n-th search term
9 WHERE node1.toplevel_corpus IN (corpora.id)

10 AND . . .
11 AND nodeN.toplevel_corpus IN (corpora.id)

12 AND additional predicates to evaluate the query

Listing 17: SQL query template to compute the solutions of an Annis query on a set of corpora.

86

1 WITH documents AS (SELECT child.id

2 FROM corpus AS root,

3 corpus AS child

4 JOIN corpus_annotation AS annotation1

5 ON (corpus.id = annotation1.corpus_ref)

6 . . .
7 JOIN corpus_annotation AS annotationL
8 ON (corpus.id = annotationL.corpus_ref)
9 WHERE root.name IN (corpus1, . . ., corpusk)

10 AND child.pre BETWEEN root.pre AND root.post

11 AND annotation1.name = ’key’1
12 AND annotation1.value = ’value’1
13 AND . . .
14 AND annotationL.name = ’key’L
15 AND annotationL.value = ’value’L)

16 SELECT DISTINCT node1.id AS id1, . . ., nodeN.id AS idN
17 FROM corpora,

18 node AS node1 JOIN additional tables required to evaluate the first search term
19 . . .
20 node AS nodeN JOIN additional tables required to evaluate the n-th search term
21 WHERE node1.corpus_ref IN (documents.id)

22 AND . . .
23 AND nodeN.corpus_ref IN (documents.id)

24 AND additional predicates to evaluate the query

Listing 18: SQL query template to compute the solutions of an Annis query with meta data.

on the toplevel attribute and MonetDB’s foreign key indexes to restrict the data. Another option is to
store the data of a corpus in an individual set of tables and reference them directly in the SQL query.
Alternatively, a view or common table expression over the union of the required corpus tables could be
constructed before the query is evaluated.

A.4 Database administration

The Annis system includes a corpus administration utility that is used to initialize a PostgreSQL database
for Annis and to import corpora into the Annis database or delete them from it. This utility creates a
Java property file that is used to configure a JDBC connection data in Annis. An example of this file
for MonetDB is shown in Listing 19. Specifically, the fully qualified class name of the MonetDB JDBC
driver is nl.cwi.monetdb.jdbc.MonetDriver and the URL scheme for a MonetDB database is jdbc:monetdb:.

datasource.driver=nl.cwi.monetdb.jdbc.MonetDriver

datasource.url=jdbc:monetdb://localhost:50000/annis

datasource.username=annis

datasource.password=annis

Listing 19: JDBC connection properties for MonetDB.

87

B Test data

In this appendix we list the query runtime data from which we generated the charts in section 6.

B.1 Query groups

The data in the following tables was used to generate the charts in section 6.2.3 and section 6.7.2.

Runtime (in ms) of queries in group A.

Query Results FROM WHERE CTE MonetDB PostgreSQL

1 tok="gleich" 108 4.6 4.6 4.2 4.4 16
2 tok="bewerten" 11 4.9 4.6 4.3 4.5 12
3 tok="befassen" 14 4.7 4.6 4.4 4 13
4 tok="bedeuten" 31 4.7 4.6 4.5 4 13
5 tok=".+nd.?.?" 0 4.5 4.3 4.6 4.7 14
6 tok="beginnen" 34 4.6 4.7 4.6 4.1 13
7 tok="begreifen" 9 4.7 4.7 4.6 3.4 12
8 tok="befürchten" 38 4.6 4.5 4.7 4.2 12
9 "jedes" 59 5.3 5.2 4.8 3.9 13
10 "jede" 78 5.2 5.2 4.9 5.6 12
11 "alles" 210 5.4 5.3 5 4 16
12 "was" 502 5.5 5.3 5 3.7 19
13 "man" 974 5.6 5.5 5.2 3.1 23
14 "Rias" 2 5.7 5.4 5.2 4.6 13
15 "Appell" 17 5.6 5.6 5.4 4.8 13
16 tok="berichten" 25 4.8 4.7 5.5 4 13
17 "6" 24 6.3 5.9 6.2 3.7 12
18 "das" 6082 7.5 7.2 7.2 4.5 79
19 word="schlafend..?" 0 16 16 16 17 2432
20 word="laufend?.?" 0 16 16 17 20 2578
21 word="laufend..?" 0 16 16 17 19 2429
22 word=".+nd.?.?" 0 17 15 17 18 2590
23 "die" 24467 20 21 20 4.4 208
24 "der" 26779 22 22 22 5.1 226
25 cat="T" 0 32 35 34 31 12
26 cat="TP" 0 36 36 34 32 12
27 lemma = "müssen" 1880 54 53 50 39 24
28 pos="VVIFIN" 0 50 56 50 42 13
29 lemma="fragen" 98 52 52 52 42 14
30 pos="ADJ." 0 53 51 52 42 12
31 pos="VVIMP" 162 51 53 53 43 15
32 cat="S" 72346 57 58 54 41 184
33 pos="ADJ" 0 53 51 54 47 13
34 pos="CARD" 15939 59 58 57 42 93
35 pos="VVPP" 17770 60 56 59 43 111

88

Runtime (in ms) of queries in group A (continued).

Query Results FROM WHERE CTE MonetDB PostgreSQL

36 pos="VVFIN" 35628 62 61 62 44 182
37 pos= "ADJA" 54534 67 70 68 43 246
38 lemma="--" 121701 84 84 84 44 159
39 tok 888578 302 295 295 15 3230
40 lemma 888578 302 311 304 35 1624
41 node 1262014 376 379 387 6.6 2926
42 lemma=/brennt/ 0 2288 2286 2291 44 12
43 lemma=/brannt/ 0 2298 2296 2299 44 11
44 lemma = /brennen/ 10 2334 2329 2323 44 13
45 lemma=/besetzt/ 33 2330 2328 2328 44 14
46 lemma=/waschen/ 8 2336 2330 2335 43 14
47 lemma=/operiert/ 0 2428 2364 2356 44 13
48 lemma = /gebrannt/ 1 2372 2364 2356 43 15
49 lemma=/brannt?/ 0 2351 2338 2356 34 14
50 lemma=/begonnen/ 17 2357 2371 2358 44 14
51 lemma=/besuchen/ 63 2376 2377 2360 42 14
52 lemma=/gebissen/ 0 2420 2357 2361 44 13
53 lemma=/gesunken/ 8 2378 2379 2364 44 13
54 lemma=/gelitten/ 1 2363 2367 2364 44 14
55 pos = /VM.*/ 9325 2367 2377 2365 58 92
56 lemma=/besuchend/ 1 2392 2404 2387 44 12
57 lemma=/gewachsen/ 19 2420 2411 2391 43 14
58 lemma=/operieren/ 16 2410 2398 2401 43 13
59 pos = /VM.* \$./ 0 2517 2526 2524 56 84
60 pos = /VM.*.*\$./ 0 2577 2568 2597 54 81
61 pos = /VM.* .* \$./ 0 2682 2678 2679 57 84
62 pos = /VM.*VV.*.*\$./ 0 2780 2775 2786 57 84
63 tok=/brannte/ 4 2829 2826 2819 3.5 11
64 tok = /müssen/ 497 2820 2821 2820 4 23
65 tok=/gebrannt/ 0 2848 2842 2842 4 11
66 tok = /bekomm../ 88 2860 2850 2855 6.1 17
67 /de.*/ 51189 2871 2879 2879 27 625
68 /der.*/ 27468 2926 2923 2920 19 383
69 /kann.*/ 886 2930 2930 2932 6.6 29
70 tok=/.+nd..?/ 11920 3024 3021 3010 208 4106
71 tok=/.*s.*/ 212862 3044 3031 3041 231 4017
72 tok=/.*und.*/ 22589 3053 3044 3046 209 3914
73 tok=/.*sich.*/ 7686 3075 3060 3064 213 4206
74 /[Kk]ann.*/ 905 3167 3156 3139 219 2812

89

Runtime (in ms) of queries in group B.

Query Results FROM WHERE CTE MonetDB PostgreSQL

75 pos="VVPP" & lemma= "gekommen" & #1_=_#2 0 162 185 150 63 16
76 pos="ADJA" & token=/.+nd..?/ & #1_=_#2 0 224 224 157 76 5066
77 pos="VVIZU" & lemma=/kommen/ & #2 _=_ #1 0 2413 2408 2409 58 33
78 pos="VVINF" & lemma=/kommen/ & #2 _=_ #1 110 2437 2437 2413 60 42
79 pos="VVPP" & lemma=/leiden/ & #2 _=_ #1 2 2426 2437 2418 62 17
80 pos="VVINF" & lemma=/leiden/ & #2 _=_ #1 9 2436 2436 2422 61 17
81 pos="VVINF" & lemma=/sinken/ & #2 _=_ #1 23 2432 2432 2422 61 21
82 pos="VVFIN" & lemma=/kommen/ & #2 _=_ #1 695 2446 2437 2427 69 42
83 pos="VVPP" & lemma=/kommen/ & #2 _=_ #1 99 2435 2432 2430 63 40
84 pos="VVFIN" & lemma=/leiden/ & #2 _=_ #1 30 2454 2458 2431 65 18
85 pos="VVFIN" & lemma=/sinken/ & #2 _=_ #1 61 2451 2450 2433 67 16
86 pos="VVPP" & lemma=/sinken/ & #2 _=_ #1 35 2426 2437 2438 62 21
87 pos="VVINF" & lemma=/führen/ & #2 _=_ #1 96 2456 2456 2441 61 27
88 pos="VVPP" & lemma=/führen/ & #2 _=_ #1 94 2452 2454 2446 63 32
89 pos="VVINF" & lemma=/wachsen/ & #2 _=_ #1 25 2469 2464 2455 61 21
90 pos="VVINF" & lemma=/beißen/ & #2 _=_ #1 1 2468 2471 2456 62 16
91 pos="VVFIN" & lemma=/wachsen/ & #2 _=_ #1 79 2498 2486 2458 66 20
92 pos="VVFIN" & lemma=/waschen/ & #2 _=_ #1 3 2488 2488 2458 67 18
93 pos="VVPP" & lemma=/wachsen/ & #2 _=_ #1 17 2458 2453 2461 62 21
94 pos="VVPP" & lemma=/beißen/ & #2 _=_ #1 0 2456 2465 2461 60 16
95 pos="VVFIN" & lemma=/beißen/ & #2 _=_ #1 3 2484 2481 2461 68 16
96 pos="VVFIN" & lemma=/brennen/ & #2 _=_ #1 8 2486 2490 2462 67 16
97 pos="VVINF" & lemma=/waschen/ & #2 _=_ #1 2 2465 2468 2462 62 17
98 pos="VVFIN" & lemma=/führen/ & #2 _=_ #1 216 2467 2484 2462 67 30
99 pos="VVINF" & lemma=/brennen/ & #2 _=_ #1 1 2465 2477 2465 61 17

100 pos="VVPP" & lemma=/brennen/ & #2 _=_ #1 0 2471 2464 2467 62 16
101 pos="VVINF" & lemma=/beginnen/ & #2 _=_ #1 21 2495 2500 2483 61 29
102 pos="VVINF" & lemma=/besetzen/ & #2 _=_ #1 6 2505 2498 2485 61 17
103 pos="VVPP" & lemma=/waschsen/ & #2 _=_ #1 0 2487 2475 2494 61 14
104 pos="VVPP" & lemma=/beginnen/ & #2 _=_ #1 80 2486 2493 2496 63 29
105 pos="VVPP" & lemma=/besetzen/ & #2 _=_ #1 25 2487 2492 2501 62 17
106 pos="VVFIN" & lemma=/beginnen/ & #2 _=_ #1 154 2516 2515 2504 68 26
107 pos="VVFIN" & lemma=/besetzen/ & #2 _=_ #1 8 2522 2508 2505 67 19
108 pos="VVINF" & lemma=/operieren/ & #2 _=_ #1 5 2531 2535 2522 60 16

90

Runtime (in ms) of queries in group B (continued).

Query Results FROM WHERE CTE MonetDB PostgreSQL

109 pos="VVFIN" & lemma=/operieren/ & #2 _=_ #1 6 2553 2549 2533 65 16
110 pos="VVPP" & lemma=/operieren/ & #2 _=_ #1 5 2530 2531 2541 60 17
111 lemma="--" & pos!=/\$.*/ & #1 _=_ #2 2225 3015 3002 2683 457 3505
112 pos="VVPP" & lemma=/(ge)?kommen/ & #2 _=_ #1 99 2804 2818 2812 229 383
113 pos="VVPP" & lemma=/(ge)?brennen/ & #2 _=_ #1 0 2852 2853 2842 228 384
114 pos="ADJA" & tok=/.nd..?/ & #1_=_#2 0 2910 2899 2900 252 3212
115 pos= "ADJA" & tok= /.+nd..?/ & #1_=_#2 3677 3080 3077 3078 236 1448
116 lemma=/.+[^aeiouäöü]chen/ & pos="NN" & #1 _=_ #2 224 3281 3267 3185 310 2667
117 lemma=/beehren/ & pos=/VVFIN/ & #1_=_#2 0 4698 4640 4607 65 16
118 lemma=/betonen/ & pos=/VVFIN/ & #1_=_#2 157 4712 4652 4608 68 30
119 lemma=/behagen/ & pos=/VVFIN/ & #1_=_#2 1 4708 4646 4609 68 15
120 lemma=/befassen/ & pos=/VVFIN/ & #1_=_#2 14 4746 4679 4632 68 17
121 lemma=/belasten/ & pos=/VVFIN/ & #1_=_#2 18 4739 4681 4635 69 22
122 lemma=/beginnen/ & pos=/VVFIN/ & #1_=_#2 154 4738 4695 4636 69 31
123 lemma=/beweinen/ & pos=/VVFIN/ & #1_=_#2 1 4740 4699 4639 66 16
124 lemma=/bewerten/ & pos=/VVFIN/ & #1_=_#2 15 4740 4701 4639 65 18
125 lemma=/begegnen/ & pos=/VVFIN/ & #1_=_#2 18 4746 4691 4639 67 17
126 lemma=/bedeuten/ & pos=/VVFIN/ & #1_=_#2 115 4741 4695 4651 68 25
127 lemma=/besolden/ & pos=/VVFIN/ & #1_=_#2 0 4736 4663 4654 66 16
128 lemma=/berichten/ & pos=/VVFIN/ & #1_=_#2 238 4774 4725 4667 67 29
129 lemma=/begreifen/ & pos=/VVFIN/ & #1_=_#2 17 4770 4714 4672 67 18
130 lemma=/bespielen/ & pos=/VVFIN/ & #1_=_#2 0 4775 4705 4677 66 16
131 lemma=/beziffern/ & pos=/VVFIN/ & #1_=_#2 26 4774 4715 4687 66 19
132 lemma=/bemuttern/ & pos=/VVFIN/ & #1_=_#2 0 4763 4719 4697 65 16
133 lemma=/begradigen/ & pos=/VVFIN/ & #1_=_#2 0 4795 4729 4698 66 16
134 lemma=/berechnen/ & pos=/VVFIN/ & #1_=_#2 5 4775 4735 4706 67 15
135 lemma=/beschenken/ & pos=/VVFIN/ & #1_=_#2 1 4811 4742 4712 69 19
136 lemma=/befürchten/ & pos=/VVFIN/ & #1_=_#2 58 4833 4790 4725 65 21
137 lemma=/bevormunden/ & pos=/VVFIN/ & #1_=_#2 0 4840 4784 4736 67 16
138 lemma=/beschichten/ & pos=/VVFIN/ & #1_=_#2 0 4828 4789 4737 68 18
139 lemma=/begünstigen/ & pos=/VVFIN/ & #1_=_#2 7 4868 4805 4780 67 14
140 lemma=/beschäftigen/ & pos=/VVFIN/ & #1_=_#2 80 4908 4856 4788 68 22
141 lemma=/be.*/ & pos=/VVFIN.*/ & #1_=_#2 3275 4957 4933 4848 93 428
142 tok=/be.*/ & pos=/VVFIN/ & #1_=_#2 3250 5156 5163 5146 66 536
143 tok=/be.+/ & pos=/VVFIN/ & #1_=_#2 3250 5155 5154 5160 68 549

91

Runtime (in ms) of queries in group C.

Query Results FROM WHERE CTE MonetDB PostgreSQL

144 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma="kommen" & #3 _=_ #1 1 3201 3289 3285 236 38
145 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/kommen/ & #3 _=_ #1 1 5528 5525 5424 234 42
146 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/kommend/ & #3 _=_ #1 219 5562 5564 5459 237 46
147 pos="ADJA" & tok=/be.+t..?/ & #1_=_#2 & lemma=/besetzen/ & #3 _=_ #1 0 5597 5595 5486 85 22
148 pos="ADJA" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/führen/ & #3 _=_ #1 0 5569 5576 5487 84 32
149 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/kommend?/ & #3 _=_ #1 220 5626 5614 5516 235 64
150 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/sinkend?/ & #3 _=_ #1 33 5630 5616 5517 236 28
151 pos="ADJA" & tok=/be.+en..?/ & #1_=_#2 & lemma=/besetzen/ & #3 _=_ #1 0 5610 5610 5519 83 22
152 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/leidend?/ & #3 _=_ #1 4 5616 5616 5520 234 23
153 pos="ADJA" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/besetzen/ & #3 _=_ #1 0 5614 5612 5525 84 23
154 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/führend?/ & #3 _=_ #1 93 5632 5649 5540 235 42
155 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/beißend?/ & #3 _=_ #1 4 5646 5649 5543 235 22
156 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/brennend?/ & #3 _=_ #1 12 5659 5638 5549 236 22
157 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/wachsend?/ & #3 _=_ #1 69 5651 5647 5550 237 35
158 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/beginnend?/ & #3 _=_ #1 17 5686 5677 5582 235 30
159 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/besetzend?/ & #3 _=_ #1 2 5684 5674 5583 235 22
160 pos="ADJA" & tok=/.+nd..?/ & #1_=_#2 & lemma=/operierend?/ & #3 _=_ #1 7 5720 5707 5629 236 27
161 os="ADJA" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/(ge)?wachsen/ & #3 _=_ #1 0 5817 5816 5740 240 238
162 pos="VVPP" & tok=/ge.+en/ & #1_=_#2 & lemma=/(ge)?kommen/ & #3 _=_ #1 99 5849 5846 5752 245 480
163 pos="ADJA" & tok=/ge.+t..?/ & #1_=_#2 & lemma=/(ge)?brannt/ & #3 _=_ #1 1 5875 5869 5785 226 394
164 pos="VVPP" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/(ge)?kommen/ & #3 _=_ #1 0 5918 5912 5839 236 226
165 pos="ADJA" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/(ge)?kommen/ & #3 _=_ #1 5 5922 5937 5848 237 262
166 pos="ADJA" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/(ge)?sinken/ & #3 _=_ #1 0 5943 5941 5848 235 255
167 pos="ADJA" & tok=/ge.+t..?/ & #1_=_#2 & lemma=/(ge)?führen/ & #3 _=_ #1 0 5944 5946 5852 240 397
168 pos="ADJA" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/(ge)?leiden/ & #3 _=_ #1 0 5954 5937 5862 238 256
169 pos="ADJA" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/(ge)?wachsen/ & #3 _=_ #1 13 5962 5970 5875 236 256
170 pos="ADJA" & tok=/ge.+en..?/ & #1_=_#2 & lemma=/(ge)?brennen/ & #3 _=_ #1 0 5969 5963 5900 237 262
171 lemma=/[^äöü]+/ & tok=/.+[äöü].+/ & pos="NN" & #1 _=_ #2 & #2 _=_ #3 5635 6225 6224 6178 469 6246

92

Runtime (in ms) of queries in group D.

Query Results FROM WHERE CTE MonetDB PostgreSQL

172 "kündigten" & "Rias" & #1 .* #2 1 12 12 12 11 16
173 "heißt" & "Appell" & #1 .* #2 3 13 11 12 9.5 19
174 lemma = "müssen" & lemma = "weg" & #1.*#2 53 179 866 223 32 28
175 lemma = "müssen" & lemma = "weg" & #1.#2 1 229 227 226 33 27
176 lemma = "müssen" & lemma = "Gefängnis" & #1.*#2 52 184 879 229 33 29
177 lemma = "müssen" & lemma = "ins" & #1.*#2 0 148 865 229 32 18
178 lemma = "müssen" & lemma = "in" & #1.*#2 27088 6681 887 255 49 233
179 pos="VVFIN" & pos="NN" & #1 .1,3 #2 17064 2087 1924 1825 1584 12766
180 pos=/de.*/ & pos="VVFIN" & #1 .1,3 #2 0 2496 2514 2506 82 203
181 tok = /müssen/ & pos = "$." & #1.*#2 17175 2890 2897 2958 65 154
182 /der.*/ & pos="VVFIN" & #1 .2 #2 1346 3044 3057 3035 63 881
183 /der.*/ & pos="NN" & #1 . #2 16383 3087 3086 3084 104 1342
184 lemma = "müssen" & pos != /VV.*/ & #1.*#2 1100647 60000 60000 3587 752 7043
185 pos = /VM.*/ & pos = /VV.*/ & #1.#2 250 4745 4732 4738 102 226
186 pos = /VM.*/ & pos = /VV.*/ & #1.*#2 428175 25964 7805 5063 239 1705
187 pos=/N.*/ & /[12][09][0-9][0-9]/ & #1 . #2 1143 5716 5710 5697 246 2903

Runtime (in ms) of queries in group E. Values for PostgreSQL which are larger than 60 seconds are taken from a single run and are not averaged.

Query Results FROM WHERE CTE MonetDB PostgreSQL

188 pos="KOUS" & "man" & "sich" & #1 . #2 & #2 . #3 21 67 68 59 53 97
189 pos = /VM.*/ & pos = /VV.*/ & pos = "$./" & #1 . #2 & #2 .* #3 0 4762 4742 4785 103 29
190 pos = /VM.*/ & pos = /VV.*/ & pos = "($.|$,)" & #1.*#2 & #2.*#3 0 4744 4755 4853 241 22
191 pos = /VM.*/ & pos = /VV.*/ & pos = /\$./ & #1.#2 & #2.*#3 21101 53352 6893 6872 128 504
192 lemma = "müssen" & pos = /VV.*/ & pos = "$." & #1.*#2 & #2.*#3 4934027 60000 55427 10099 2045 35898
193 pos = /VM.*/ & pos = /VV.*/ & pos = /\$.*/ & #1.*#2 & #2.*#3 53381806 60000 60000 49300 20489 > 1 hour
194 pos = /VM.*/ & pos = /VV.*/ & pos = /\$./ & #1.*#2 & #2.*#3 53381806 60000 60000 50605 17136 > 1 hour
195 pos = /VM.*/ & pos = /VV.*/ & pos = /(\$.|\$,)/ & #1.*#2 & #2.*#3 53381806 60000 60000 50972 20449 221899
196 pos = /VM.*/ & pos = /VV.*/ & pos = /\$,/ & #1.*#2 & #2.*#3 21195563 60000 60000 55153 7835 159253
197 pos = /VM.*/ & pos = /VV.*/ & pos = "$." & #1.*#2 & #2.*#3 19880160 60000 60000 59359 7278 90226
198 lemma = "müssen" & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 56465383 60000 60000 60000 18303 291707
199 lemma = "wollen" & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 32066327 60000 60000 60000 12918 146409
200 lemma="müssen" & pos!="VV.*" & pos="$." & #1 .* #2 & #2 .* #3 61399410 60000 60000 60000 19946 258617
201 pos = /VM.*/ & pos != /VV.*/ & pos="$." & #1.*#2 & #2.*#3 230726493 60000 60000 60000 113993 968239
202 pos = /VM.*/ & pos = /VV.*/ & pos = /.*/ & #1.*#2 & #2.*#3 383753400 60000 60000 60000 210359 3512753

93

Runtime (in ms) of queries in group F.

Query Results FROM WHERE CTE MonetDB PostgreSQL

203 cat="S" & cat="NP" & cat="NP" & #1 >[func="OA"] #2 & #1 >[func="SB"] #3 & #2 .* #3 412 614 1018 228 198 268
204 cat="S" & "umfaßt" & #1 > #2 29 8211 8303 258 255 16
205 cat="S" & pos="PTKVZ" & pos="VVFIN" & #1 > #3 & #1 _l_ #2 36 577 576 265 188 84
206 cat="S" & "heißt" & "Appell" & #2 .* #3 & #1 > #2 3 189 197 270 264 29
207 cat="S" & node & pos="VVFIN" & node & #1 >[func="OA"] #2 & #1 > #3 & #1 >[func="SB"] #4 & #2 .* #3 & #3 .* #4 905 967 1040 271 218 600
208 cat="S" & "umfaßt" & "albanischen" & #1 > #2 & #1 > #3 0 297 300 280 272 17
209 cat="S" & "umfaßt" & "albanischen" & #1 >* #2 & #1 >* #3 2 297 6928 280 274 29
210 cat="S" & "umfaßt" & "heißt" & #1 >* #2 & #1 _i_ #3 1 256 252 285 273 188
211 "desto" & "desto" & #1 $* #2 & #1 .* #2 1 296 299 285 270 18
212 cat="S" & "umfaßt" & "heißt" & #1 >* #2 & #1 >* #3 1 323 7069 286 276 32
213 cat="S" & "umfaßt" & "heißt" & #1 _i_ #2 & #1 >* #3 0 251 248 289 277 38
214 cat="S" & #1:root & pos="VVFIN" & #1 > #2 & node & #1 >[func="SB"] #3 & #2 .* #3 9364 304 214 533
215 pos="NE" & cat="S" & pos="PRELS" & pos="VVFIN" & #2 >[func="HD"] #4 & #1 $ #2 & #3 $ #4 192 1621 60000 353 279 140
216 cat="S" & pos="VVFIN" & cat & cat & #1 >[func="HD"] #2 & #1 _l_ #3 & #3 . #4 & #4 . #2 232 592 598 391 348 955
217 cat="S" & #1:root & pos="VVFIN" & #1 >[func="HD"] #2 & cat & #1 > #3 & #1 _l_ #3 & cat & #1 > #4 & #3 . #4 & #4 . #2 8 533 511 619
218 cat="S" & pos="VVFIN" & #1 _i_ #2 45375 12677 26800 988 877 4795
219 cat=/(S|VP)/ & lemma="machen" & #1 >edge #2 810 9171 9229 1567 371 32
220 tok & cat="VP" & #1 . #2 & tok & #2 _i_ #3 & #1 $ #3 1391 6088 6178 1713 1753 5018
221 /[Jj]e/ & "desto" & #1 $* #2 & morph="Comp" & morph="Comp" & #1 . #3 & #2 . #4 10 11511 9831 3325 284 93
222 tok=/be.+/ & pos=/VVFIN/ & #1_i_#2 3250 5195 5194 5190 172 1775
223 cat = "S" & pos = /VM.*/ & pos = /VV.*/ & #1>*#2 & #1>*#3 22104 60000 60000 5202 225 661
224 cat = "S" & pos = /VM.*/ & pos != /VV.*/ & #1>*#2 & #1>*#3 203627 38144 37826 5756 1088 1727

94

B.2 Regular expressions

The data in the following table was used to generate the chart in section 6.3.4.

Runtime (in ms) of regular expression searches using different optimizations.

Query Results Unopt. Bounded BAT BoundedBAT Exact NULLs

1 tok=/gebrannt/ 0 2829 36 246 35 4.8 2652
2 tok=/brannte/ 4 2808 37 246 38 4.9 2605
3 tok = /müssen/ 497 2808 35 247 34 5 2616
4 /kann.*/ 886 2912 40 243 35 2695
5 tok = /bekomm../ 88 2838 41 246 39 2629
6 /der.*/ 27468 2902 140 260 67 2691
7 /de.*/ 51189 2865 204 262 76 2649
8 tok=/.+nd..?/ 11920 3007 254 2794
9 tok=/.*s.*/ 212862 3016 315 2825
10 tok=/.*und.*/ 22589 3036 260 2808
11 tok=/.*sich.*/ 7686 3048 258 2833
12 /[Kk]ann.*/ 905 3135 247 2908
13 lemma=/operiert/ 0 2339 140 264 136 46 2417
14 lemma=/besuchen/ 63 2331 150 265 145 47 2425
15 lemma=/brannt/ 0 2270 151 264 145 47 2365
16 lemma = /gebrannt/ 1 2331 148 267 139 47 2425
17 lemma=/gelitten/ 1 2334 145 265 142 48 2458
18 lemma=/gewachsen/ 19 2367 145 266 142 48 2456
19 lemma = /brennen/ 10 2295 148 269 145 49 2394
20 lemma=/gebissen/ 0 2331 146 265 138 49 2423
21 lemma=/besuchend/ 1 2366 145 267 143 50 2459
22 lemma=/waschen/ 8 2324 138 266 133 50 2384
23 lemma=/begonnen/ 17 2333 150 266 146 50 2422
24 lemma=/brennt/ 0 2278 151 263 147 50 2360
25 lemma=/besetzt/ 33 2296 150 269 146 50 2387
26 lemma=/operieren/ 16 2367 136 267 136 51 2454
27 lemma=/gesunken/ 8 2331 143 262 142 55 2423
28 lemma=/brannt?/ 0 2330 149 267 147 2408
29 pos = /VM.* .* \$./ 0 2665 173 238 143 2677
30 pos = /VM.* \$./ 0 2505 174 236 144 2526
31 pos = /VM.*.*\$./ 0 2569 174 237 145 2603
32 pos = /VM.*/ 9325 2356 178 279 150 2394
33 pos = /VM.*VV.*.*\$./ 0 2771 178 237 141 2802

95

B.3 Sorted tables

The data in the following tables was used to generate the charts in section 6.4.

Runtime (in ms) of text searches on a sorted node table.

Query Results Unsorted Sorted

1 tok="gleich" 108 4.1 3.6
2 tok=/gebrannt/ 0 4.4 4.4
3 "jede" 78 4.6 4.7
4 tok="begreifen" 9 4.6 4.5
5 tok="bewerten" 11 4.6 4.8
6 "jedes" 59 4.7 4.5
7 "man" 974 4.7 4.6
8 "Rias" 2 4.7 4.9
9 tok = /müssen/ 497 4.7 4.7
10 tok="bedeuten" 31 4.7 4.5
11 tok="befassen" 14 4.7 4
12 tok="berichten" 25 4.7 4.3
13 "was" 502 4.8 4.5
14 tok="befürchten" 38 4.8 4.3
15 tok="beginnen" 34 4.8 4.5
16 tok=/brannte/ 4 4.8 4.5
17 "alles" 210 4.9 4.3
18 "Appell" 17 5.2 5.3
19 "6" 24 5.7 5.4
20 "das" 6082 5.8 5
21 tok=".+nd.?.?" 0 6.2 5.2
22 "der" 26779 9.7 5.1
23 "die" 24467 10 5
24 /kann.*/ 886 35 7.2
25 tok = /bekomm../ 88 38 6.6
26 /der.*/ 27468 56 20
27 /de.*/ 51189 66 29
28 /[Kk]ann.*/ 905 244 220
29 tok=/.+nd..?/ 11920 249 208
30 tok=/.*und.*/ 22589 251 212
31 tok=/.*sich.*/ 7686 254 216
32 tok=/.*s.*/ 212862 274 231

96

Runtime (in ms) of annotation searches on a sorted node_annotation table.

Query Results Unsorted Sorted on name Sorted on value

1 word="laufend..?" 0 15 15 15
2 word=".+nd.?.?" 0 15 17 15
3 word="laufend?.?" 0 16 17 14
4 word="schlafend..?" 0 16 18 16
5 lemma 888578 27 38 37
6 cat="T" 0 33 32 34
7 cat="S" 72346 34 39 32
8 cat="TP" 0 37 32 32
9 pos="VVIFIN" 0 48 47 48
10 lemma="--" 121701 50 49 43
11 pos="CARD" 15939 50 48 47
12 lemma=/besetzt/ 33 50 48 47
13 pos="VVIMP" 162 50 46 46
14 pos="VVPP" 17770 50 44 47
15 pos= "ADJA" 54534 51 47 46
16 lemma=/operieren/ 16 51 50 46
17 pos="ADJ." 0 51 46 47
18 lemma=/operiert/ 0 51 48 44
19 lemma=/besuchen/ 63 52 48 45
20 lemma=/begonnen/ 17 52 48 46
21 lemma=/gelitten/ 1 52 48 46
22 pos="VVFIN" 35628 52 48 45
23 lemma = /brennen/ 10 52 47 48
24 lemma = /gebrannt/ 1 52 48 49
25 lemma=/brennt/ 0 52 49 47
26 lemma=/gesunken/ 8 52 49 46
27 lemma=/waschen/ 8 52 49 47
28 lemma=/gebissen/ 0 53 49 47
29 lemma="fragen" 98 53 47 49
30 lemma=/brannt/ 0 54 47 48
31 lemma = "müssen" 1880 54 47 45
32 pos="ADJ" 0 54 48 46
33 lemma=/besuchend/ 1 54 49 49
34 lemma=/gewachsen/ 19 56 48 47
35 pos = /VM.*VV.*.*\$./ 0 143 57 125
36 pos = /VM.*.*\$./ 0 145 55 123
37 pos = /VM.* \$./ 0 146 56 122
38 pos = /VM.* .* \$./ 0 148 55 124
39 pos = /VM.*/ 9325 148 58 126
40 lemma=/brannt?/ 0 151 33 138

97

References

[A+03] Stefanie Albert et al. TIGER Annotationsschema. Technical report, Universität des Saar-
landes, Universität Stuttgart, and Universität Potsdam, 2003.

[AAB+08] Rakesh Agrawal, Anastasia Ailamaki, Philip A. Bernstein, Eric A. Brewer, Michael J.
Carey, Surajit Chaudhuri, AnHai Doan, Daniela Florescu, Michael J. Franklin, Hec-
tor Garcia-Molina, Johannes Gehrke, Le Gruenwald, Laura M. Haas, Alon Y. Halevy,
Joseph M. Hellerstein, Yannis E. Ioannidis, Hank F. Korth, Donald Kossmann, Samuel
Madden, Roger Magoulas, Beng Chin Ooi, Tim O’Reilly, Raghu Ramakrishnan, Sunita
Sarawagi, Michael Stonebraker, Alexander S. Szalay, and Gerhard Weikum. The Clare-
mont Report on Database Research. SIGMOD Record, 37(3):9–19, 2008.

[ABdVB06] Wouter Alink, Raoul Bhoedjang, Arjen de Vries, and Peter Boncz. Efficient XQuery Sup-
port For Stand-Off Annotation. In Proceedings of International Workshop on XQuery
Implementation, Experience and Perspectives, 2006.

[ABH09] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. Column-oriented Database
Systems. In Proceedings of the VLDB Endowment, August 2009.

[ADHW99] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs on a
Modern Processor: Where Does Time Go? In Proceedings of the International Conference
on Very Large Data Bases, 1999.

[BCD+05] Steven Bird, Yi Chen, Susan Davidson, Haejoong Lee, and Yifeng Zheng. Extending XPath
to Support Linguistic Queries. In Proceedings of the Workshop on Programming Language
Technologies for XML, 2005.

[BCD+06] Steven Bird, Yi Chen, Susan B. Davidson, Haejoong Lee, and Yifeng Zheng. Designing and
Evaluating an XPath Dialect for Linguistic Queries. In Proceedings of the International
Conference on Data Engineering (ICDE), 2006.

[BCF+10] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie,
Jérôme Siméon, et al. XQuery 1.0: An XML Query Language (Second Edition) [online].
2010. Available from: http://www.w3.org/TR/xquery [cited 2012/08/31].

[BCR98] Douglas Biber, Susan Conrad, and Randi Reppen. Corpus Linguistics: Investigating Lan-
guage Structure and Use. Cambridge University Press, 1998.

[BDE+04] Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen-Schirra, Esther König,
Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit. TIGER: Linguistic
Interpretation of a German Corpus. Research on Language & Computation, 2(4):597–620,
2004.

[BGvK+06] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rittinger, and Jens
Teubner. MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
2006.

[BJL+99] Douglas Biber, Stig Johansson, Geoffrey Leech, Susan Conrad, Edward Finegan, and Ran-
dolph Quirk. Longman Grammar of Spoken and Written English. MIT Press, 1999.

[BK99] Peter A. Boncz and Martin L. Kersten. MIL primitives for querying a fragmented world.
The VLDB Journal, 1999.

[BK02] Gosse Bouma and Geert Kloosterman. Querying Dependency Treebanks in XML. In
Proceedings of the International Conference on Language Resources and Evaluation, 2002.

[BK07] Gosse Bouma and Geert Kloosterman. Mining Syntactically Annotated Corpora with
XQuery. In Proceedings of the Linguistic Annotation Workshop, 2007.

98

http://www.w3.org/TR/xquery

[BL07] Steven Bird and Haejoong Lee. Graphical Query for Linguistic Treebanks. In Proceedings
of the Conference of the Pacific Association for Computational Linguistics, 2007.

[BMK99] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database Architecture Optimized
for the New Bottleneck: Memory Access. In Proceedings of the International Conference
on Very Large Data Bases, 1999.

[BPSM+00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, et al.
Extensible Markup Language (XML) 1.0 [online]. 2000. Available from: http://www.w3.

org/TR/REC-xml [cited 2012/08/31].

[BR08] Ute Bohnacker and Christina Rosén. How to start a V2 declarative clause: Transfer of
syntax vs. information structure in L2 German. Nordlyd, 34(3):29–56, 2008.

[BRK98] Peter A. Boncz, Tim Rühl, and Fred Kwakkel. The Drill Down Benchmark. In Proceedings
of the International Conference on Very Large Data Bases, 1998.

[BZ10] Margit Breckle and Heike Zinsmeister. A corpus-based contrastive analysis of local coher-
ence in L1 and L2 German. In Proceedings of the International Conference by the Croatian
Applied Linguistics Society, 2010.

[C+99] James Clark et al. XSL Transformations (XSLT) Version 1.0 [online]. 1999. Available from:
http://www.w3.org/TR/xslt [cited 2012/08/31].

[Cas02] Steve Cassidy. XQuery as an Annotation Query Language: a Use Case Analysis. In
Proceedings of the Language Resources and Evaluation Conference, 2002.

[CD+99] James Clark, Steve DeRose, et al. XML Path Language (XPath) Version 1.0 [online]. 1999.
Available from: http://www.w3.org/TR/xpath [cited 2012/08/31].

[CEHK05] Jean Carletta, Stefan Evert, Ulrich Heid, and Jonathan Kilgour. The NITE XML Toolkit:
Data Model and Query Language. Language Resources and Evaluation, 39(4):313–334,
2005.

[CHSSZE05] Berthold Crysmann, Silvia Hansen-Schirra, George Smith, and Dorothea Ziegler-Eisele.
TIGER Morphologie-Annotationsschema. Technical report, Universität des Saarlandes,
Universität Stuttgart, and Universität Potsdam, 2005.

[CK85] George P. Copeland and Setrag N. Khoshafian. A Decomposition Storage Model. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, 1985.

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim. Opti-
mizing queries with materialized views. In Proceedings of the International Conference on
Data Engineering, 1995.

[Cro93] Steve Crowdy. Spoken Corpus Design. Literary and Linguistic Computing, 8(4):259–265,
1993.

[CRS11] Christian Chiarcos, Julia Ritz, and Manfred Stede. Querying and visualizing coreference
annotation in multi-layer corpora. In Proceedings of the Discourse Anaphora and Anaphor
Resolution Colloquium, 2011.

[DGSW04] Stefanie Dipper, Michael Götze, Manfred Stede, and Tillmann Wegst. ANNIS: A Linguistic
Database for Exploring Information Structure. Technical report, Universität Potsdam,
2004.

[Dra37] Erich Drach. Grundgedanken der deutschen Satzlehre. M. Diesterweg, 1937.

[ET07] Richard Eckart and Elke Teich. An XML-based data model for flexible representation and
query of linguistically interpreted corpora. In Proceedings of the Biannual Conference of
the Society for Computational Linguistics and Language Technology, 2007.

[Gar95] Stephen R. Garner. WEKA: The Waikato Environment for Knowledge Analysis. In Pro-
ceedings of New Zealand Computer Science Research Students Conference, 1995.

99

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath

[GHMP04] Dennis F. Galletta, Raymond Henry, Scott McCoy, and Peter Polak. Web Site Delays:
How Tolerant are Users? Journal of the Association for Information Systems, 5(1):1, 2004.

[GKT04] Torsten Grust, Maurice Van Keulen, and Jens Teubner. Accelerating XPath Evaluation in
Any RDBMS. ACM Transactions on Database Systems, 29(1):91–131, 2004.

[GMS92] Hector Garcia-Molina and Kenneth Salem. Main Memory Database Systems: An Overview.
IEEE Transactions on Knowledge and Data Engineering, 4(6):509–516, 1992.

[H+97] Philip Hazel et al. PCRE – Perl Compatible Regular Expressions [online]. 1997. Available
from: http://www.pcre.org [cited 2012/08/15].

[HBK+00] Edward W. Hinrichs, Julia Bartels, Yasuhiro Kawata, Valia Kordoni, and Heike Telljohann.
The VERBMOBIL Treebanks. In Proceedings of the Conference on Natural Language
Processing (KONVENS), 2000.

[HKN+04] Erhard Hinrichs, Sandra Kübler, Karin Naumann, Heike Telljohann, Julia Trushkina, et al.
Recent Developments in Linguistic Annotations of the TüBa-D/Z Treebank. In Proceedings
of the Workshop on Treebanks and Linguistic Theories, 2004.

[HRŠŠ10] Jirka Hana, Alexandr Rosen, Svatava Škodová, and Barbora Štindlová. Error-tagged
Learner Corpus of Czech. In Proceedings of the Linguistic Annotation Workshop, 2010.

[Hüt08] Karsten Hütter. Entwicklung einer Benutzerschnittstelle für die Suche in linguistischen
mehrebenen Korpora unter Betrachtung softwareergonomischer Gesichtspunkte. Diplo-
marbeit. Humboldt-Universität zu Berlin, 2008.

[IEE04] IEEE. IEEE Standard for Information Technology – Portable Operating System Interface
(POSIX). Shell and Utilities. IEEE standard 1003.2-2004. IEEE Computer Society, 2004.

[INGK07] Milena Ivanova, Niels Nes, Romulo Goncalves, and Martin L. Kersten. MonetDB/SQL
Meets SkyServer: the Challenges of a Scientific Database. In Proceedings of the Interna-
tional Conference on Scientific and Statistical Database Management, 2007.

[ISO03] ISO/IEC. Information technology – Database languages – SQL, ISO/IEC standard 9075-
*:2003. International Organisation for Standardization / International Electrotechnical
Commission, 2003.

[Kep03] Stephan Kepser. Finite Structure Query: A Tool for Querying Syntactically Annotated
Corpora. In Proceedings of the Conference of the European Chapter of the Association for
Computational Linguistics, 2003.

[Kep04] Stephan Kepser. A Simple Proof for the Turing-Completeness of XSLT and XQuery. In
Proceedings of Extreme Markup Languages, 2004.

[KM01] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS, Department
of Computer Science, Aarhus University, 2001.

[KRZZ11] Thomas Krause, Julia Ritz, Amir Zeldes, and Florian Zipser. Topological Fields, Con-
stituents and Coreference: A New Multi-layer Architecture for TüBa-D/Z. In Jahrestagung
der Gesellschaft für Sprachtechnologie und Computerlinguistik (GSCL), 2011.

[LB04] Catherine Lai and Steven Bird. Querying and Updating Treebanks: A Critical Survey and
Requirements Analysis. In Proceedings of the Australasian Language Technology Workshop,
2004.

[LB10] Catherine Lai and Steven Bird. Querying Linguistic Trees. Journal of Logic, Language and
Information, 19:53–73, 2010.

[LDH+08] Anke Lüdeling, Seanna Doolittle, Hagen Hirschmann, Karin Schmidt, and Maik Walter.
Das Lernerkorpus Falko. Deutsch als Fremdsprache, 45:67–73, 2008.

[Lez02] Wolfgang Lezius. Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. PhD thesis,
Universität Stuttgart, 2002.

100

http://www.pcre.org

[Lüd11] Anke Lüdeling. Corpora in Linguistics: Sampling and Annotation. In Going Digital:
Evolutionary and Revolutionary Aspects of Digitization (Nobel Symposium 147), 2011.

[LZ08] Anke Lüdeling and Amir Zeldes. Three Views on Corpora: Corpus Linguistics, Literary
Computing, and Computational Linguistics. Jahrbuch für Computerphilologie, 2008.

[Mar04] Maarten Marx. XPath with Conditional Axis Relations. In Proceedings of the International
Conference on Extending Database Technology (EDBT), 2004.

[Mei03] Wolfgang Meier. eXist: An Open Source Native XML Database. In Web, Web-Services,
and Database Systems, volume 2593 of Lecture Notes in Computer Science. Springer, 2003.

[MIM+01] David McKelvie, Amy Isard, Andreas Mengel, Morten Baun Møller, Michael Grosse, and
Marion Klein. The MATE workbench – An annotation tool for XML coded speech corpora.
Speech Communication, 33(1–2):97–112, 2001.

[MK09] Hendrik Maryns and Stephan Kepser. MonaSearch – Querying Linguistic Treebanks with
Monadic Second-Order Logic. In Proceedings of the International Workshop on Treebanks
and Linguistic Theories, 2009.

[MKB09] Stefan Manegold, Martin L. Kersten, and Peter A. Boncz. Database Architecture Evolu-
tion: Mammals Flourished Long Before Dinosaurs Became Extinct. In Proceedings of the
International Conference on Very Large Data Bases, 2009.

[MKC06] Neil Mayo, Jonathan Kilgour, and Jean Carletta. Towards an Alternative Implementation
of NXT’s Query Language via XQuery. In Proceedings of the Workshop on NLP and XML,
2006.

[MLV08] Torsten Marek, Joakim Lundborg, and Martin Volk. Extending the TIGER Query Lan-
guage with Universal Quantification. In Proceedings of the Conference on Natural Language
Processing (KONVENS), 2008.

[MMS93] Mitchel P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a Large
Annotated Corpus of English: the Penn Treebank. Computational Linguistics - Special
issue on using large corpora: II, 19(2):313–330, 1993.

[MMWK10] Ashok Malhotra, Jim Melton, Norman Walsh, and Michael Kay. XQuery 1.0 and XPath
2.0 Functions and Operators (Second Edition) [online]. 2010. Available from: http://www.
w3.org/TR/xpath-functions [cited 2012/08/31].

[MRM04] Adam Meyers, Ruth Reeves, and Catherine Macleod. NP-external arguments a study of
argument sharing in English. In Proceedings of the Workshop on Multiword Expressions:
Integrating Processing, 2004.

[PDL+08] Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo Aravind Joshi,
and Bonnie Webber. The Penn Discourse TreeBank 2.0. In Proceedings of the International
Conference on Language Resources and Evaluation (LREC), 2008.

[PGK05] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated
Corpus of Semantic Roles. Computational Linguistics, 31(1):71–106, 2005.

[PIS+05] James Pustejovsky, Robert Ingria, Roser Saurí, José Castaño, Jessica Littman, Rob
Gaizauskas, Andrea Setze, Graham Katz, and Inderjeet Mani. The Specification Language
TimeML. The Language of Time: A Reader, 2005.

[PMPP05] James Pustejovsky, Adam Meyers, Martha Palmer, and Massimo Poesio. Merging Prop-
Bank, NomBank, TimeBank, Penn Discourse Treebank and Coreference. In Proceedings of
the Workshop on Frontiers in Corpus Annotations II: Pie in the Sky, 2005.

[Pos96] PostgreSQL Global Development Group. PostgreSQL. http://www.postgresql.org/, 1996.

101

http://www.w3.org/TR/xpath-functions
http://www.w3.org/TR/xpath-functions
http://www.postgresql.org/

[Pos12] PostgreSQL Global Development Group. PostgreSQL Manual: 18.4. Resource Con-
sumption [online]. 2012. Available from: http://www.postgresql.org/docs/9.1/static/

runtime-config-resource.html [cited 2012/08/23].

[PV98] Massimo Poesio and Renata Vieira. A corpus-based investigation of definite description
use. Computational Linguistics, 24(2):183–216, 1998.

[R11] R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0.

[RE05] Philip Resnik and Aaron Elkiss. The Linguist’s Search Engine: An Overview. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics (ACL), 2005.

[RECD08] Georg Rehm, Richard Eckart, Christian Chiarcos, and Johannes Dellert. Ontology-Based
XQuery’ing of XML-Encoded Language Resources on Multiple Annotation Layers. In
Proceedings of Language Resources and Evaluation Conference (LREC), 2008.

[RLH97] Paul Rayson, Geoffrey Leech, and Mary Hodges. Social differentiation in the use of En-
glish vocabulary: some analyses of the Conversational Component of the British National
Corpus. International Journal of Corpus Linguistics, 1997.

[Roh05] Douglas L. T. Rohde. TGrep2 User Manual, 2005.

[Ros11] Viktor Rosenfeld. An Implementation Of The Annis 2 Query Language. Studienarbeit,
Humboldt-Universität zu Berlin, Available at: http://www.informatik.hu-berlin.de/

forschung/gebiete/wbi/teaching/studienDiplomArbeiten/finished/2010/rosenfeld_

studienarbeit.pdf, 2011.

[RSW+09] Georg Rehm, Oliver Schonefeld, Andreas Witt, Erhard W. Hinrichs, and Marga Reis.
Sustainability of annotated resources in linguistics: A web-platform for exploring, querying,
and distributing linguistic corpora and other resources. Literary and Linguistic Computing,
24(2):193–210, 2009.

[SBÇ+07] Michael Stonebraker, Chuck Bear, Uğur Çetintemel, Mitch Cherniack, Tingjian Ge, Nabil
Hachem, Stavros Harizopoulos, John Lifter, Jennie Rogers, and Stan Zdonik. One Size
Fits All? – Part 2: Benchmarking Results. In Proceedings of the Conference on Innovative
Data Systems Research, 2007.

[Sch03] Ulrich Schäfer. WHAT: An XSLT-based Infrastructure for the Integration of Natural Lan-
guage Processing Components. In Proceedings of the Workshop on Software Engineering
and Architecture of Language Technology Systems (HLT-NAACL), 2003.

[SJ08] Said Sahel and Julia Jonischkait. Syntaktische Funktionen im Vorfeld. Eine empirische
Studie. Muttersprache, 118(4):281–294, 2008.

[SK02] Ilona Steiner and Laura Kallmeyer. VIQTORYA — A Visual Query Tool for Syntactically
Annotated Corpora. In Proceedings of the International Conference on Language Resources
and Evaluation (LREC), 2002.

[Spe08] Augustin Speyer. German Vorfeld-filling as constraint interaction. In Anton Benz and
Peter Kühnlein, editors, Constraints in Discourse. John Benjamins Publishing Company,
2008.

[Spe10] Augustin Speyer. Filling the German vorfeld in written and spoken discourse. In Sanna-
Kaisa Tanskanen, Marja-Liisa Helasvuo, Marjut Johansson, and Mia Raitaniemi, editors,
Discourses in Interaction. John Benjamins Publishing Company, 2010.

[SR03] Jasmin Saric and Uwe Reyle. TIGERSearch attacks Proteins. In Proceedings of the Euro-
pean Conference on Computational Biology (ECCB), 2003.

[Ste04] Manfred Stede. The Potsdam Commentary Corpus. In Proceedings of the ACL Workshop
on Discourse Annotation, 2004.

102

http://www.postgresql.org/docs/9.1/static/runtime-config-resource.html
http://www.postgresql.org/docs/9.1/static/runtime-config-resource.html
http://www.informatik.hu-berlin.de/forschung/gebiete/wbi/teaching/studienDiplomArbeiten/finished/2010/rosenfeld_studienarbeit.pdf
http://www.informatik.hu-berlin.de/forschung/gebiete/wbi/teaching/studienDiplomArbeiten/finished/2010/rosenfeld_studienarbeit.pdf
http://www.informatik.hu-berlin.de/forschung/gebiete/wbi/teaching/studienDiplomArbeiten/finished/2010/rosenfeld_studienarbeit.pdf

[STST99] Anne Schiller, Simone Teufel, Christine Stöckert, and Christine Thielen. Guidelines für
das Tagging deutscher Textkorpora mit STTS. Technical report, Universität Stuttgart and
Universität Tübingen, 1999.

[Tay03] Claire Louise Taylor. XSLT as a Linguistic Query Language. Master’s thesis, The University
of Melbourne, 2003.

[Tay08] Charlotte Taylor. What is corpus linguistics? What the data says. International Computer
Archive of Modern and Medieval English, 32:179–200, 2008.

[TL05] Silke Trißl and Ulf Leser. Querying Ontologies in Relational Database Systems. In Pro-
ceedings of the Workshop on Data Integration in the Life Sciences, 2005.

[TM97] Henry S. Thompson and David McKelvie. Hyperlink semantics for standoff markup of
read-only documents. In Proceedings of SGML Europe, 1997.

[VEKC03] Holger Voormann, Stefan Evert, Jonathan Kilgour, and Jean Carletta. NXT Search User’s
Manual (Draft), 2003.

[Vit04] Thorsten Vitt. Speicherung linguistischer Korpora in Datenbanken. Studienarbeit,
Humboldt-Universität zu Berlin. Available at: http://www2.informatik.hu-berlin.de/

Forschung_Lehre/wbi/research/stud_arbeiten/finished/2004/vitt_041114.pdf, 2004.

[Vit05] Thorsten Vitt. DDDquery: Anfragen an komplexe Korpora. Diplomarbeit, Humboldt-
Universität zu Berlin, 2005.

[VL02] Holger Voormann and Wolfgang Lezius. TIGERin – Grafische Eingabe von Benutzeran-
fragen für ein Baumbank-Anfragewerkzeug. In Proceedings of the Conference on Natural
Language Processing (KONVENS), 2002.

[WHM+11] Ralph Weischedel, Eduard Hovy, Mitchell Marcus, Martha Palmer, Robert Belvin, Sameer
Pradhan, Lance Ramshaw, and Nianwen Xue. OntoNotes: A Large Training Corpus for En-
hanced Processing. In Handbook of Natural Language Processing and Machine Translation.
Springer, 2011.

[WN00] Sean Wallis and Gerald Nelson. Exploiting Fuzzy Tree Fragment Queries in the Investiga-
tion of Parsed Corpora. Literary and Linguistic Computing, 15(3):339–362, 2000.

[ZHS+97] Gisela Zifonun, Ludger Hoffmann, Bruno Strecker, et al. Grammatik der deutschen Sprache.
Walter de Gruyter, 1997.

[ZR10] Florian Zipser and Laurent Romary. A model oriented approach to the mapping of annota-
tion formats using standards. InWorkshop on Language Resource and Language Technology
Standards, 2010.

[ZRLC09] Amir Zeldes, Julia Ritz, Anke Lüdeling, and Christian Chiarcos. ANNIS: A Search Tool
for Multi-Layer Annotated Corpora. In Proceedings of Corpus Linguistics, 2009.

103

http://www2.informatik.hu-berlin.de/Forschung_Lehre/wbi/research/stud_arbeiten/finished/2004/vitt_041114.pdf
http://www2.informatik.hu-berlin.de/Forschung_Lehre/wbi/research/stud_arbeiten/finished/2004/vitt_041114.pdf

	Introduction
	Corpora as resources for linguistic study
	Annis – A multi-layer corpus architecture
	Main-memory and column-oriented database systems
	Structure of this work

	The Annis corpus system
	System architecture
	Data model
	The annotation graph
	The corpus hierarchy

	The Annis query language
	Query functions
	Search terms
	Unary linguistic constraints
	Binary linguistic constraints
	Document meta data

	Implementation of Annis on a relational database system
	Storing the Annis model in a relational database
	The pre/post-order scheme
	Separation of connected components by edge type
	Merging of dominance hierarchies
	Redundancy in the pre/post-order scheme
	Database schema

	Computing the solutions to an Annis query
	Tables required for the evaluation of search terms
	Annis queries containing OR

	Implementation of select Annis language features
	Implementation of search terms
	Implementation of coverage operators
	Implementation of precedence operators
	Implementation of dominance and pointing relation operators
	Implementation of the common ancestor operator
	The COUNT query function
	Regular expression searches
	Corpus selection

	Current implementation on top of PostgreSQL

	Related Work
	Requirements for a modern linguistic query language
	XML-based query languages
	Dedicated tree query languages
	Multi-layer query languages and corpus systems
	Graphical query languages
	Feature comparison

	Experimental setup
	The TIGER Treebank
	Test queries for the TIGER Treebank
	Test query groups
	Invalid test queries

	Test systems
	MonetDB configuration
	PostgreSQL configuration
	Measurement procedure

	Port of Annis to MonetDB
	Initial port of Annis to MonetDB
	Regular expression pattern matching
	Evaluation of boolean attributes
	Reserved keywords as attribute names

	Query execution plans
	Computation of query solutions in a nested subquery
	Computation of query solutions in a common table expression
	Performance of different query plans

	Regular expression searches
	Implementation of regular expression searches
	Minimizing regular expression match loop iterations
	BAT-aware regular expression matching
	Performance comparison of regular expression searches

	Binary string searches
	Deduplication of query solutions
	Annis queries requiring explicit deduplication of query solutions
	Query performance without explicit deduplication

	Influence of optimization strategies
	Comparison with PostgreSQL
	Disk space consumption
	Individual query performance
	Performance on a random workload

	Conclusion
	Additional Annis features
	The ANNOTATE query function
	The MATRIX query function
	Corpus selection and metadata
	Database administration

	Test data
	Query groups
	Regular expressions
	Sorted tables

	References

