
1.39

1.12

0.55 0.5
0.42 0.39

0.0

0.5

1.0

1.5

JIT−compiled Reuse
String
object

Wrap
engine
buffer

Relax
exception
handling

Remove
memory

fence

Hand−written

W
al

l−
cl

oc
k

tim
e

[re
la

tiv
e

to
 S

pa
rk
−o

nl
y]

Spark−only

●

●

●

●

● ● ● ● ● ●

1

10

100

100 101 102 103 104 105 106 107 108 109

Stride size [logscale]

Se
co

nd
s

[lo
gs

ca
le

]

Loop in Java

Loop in C++

Split loop

Analytics
tolerate slightly

stale data

Analytics
require most
recent data

Transactions
high volume

Wildfire
engine

Spark
executor

Wildfire
engine

Wildfire
engine

Spark
executor

Spark
executor

Shared file system

Spark applications

Processing Java UDFs in a C++ Environment
Viktor Rosenfeld, Rene Mueller, Pınar Tözün, Fatma Özcan IBM Research – Almaden

Wildfire
• Distributed HTAP system
• Columnar, pipelined query

execution engine
• Written in C++
• Spark as user-facing front end
• Data analytics with SparkSQL

Execute Scala UDFs found in SparkSQL
queries on the Wildfire C++ engine.

Java Native Interface
• Standard way to

connect JVM with
native code
• JNI calls have

significant overhead
• Strided execution

hides overheads

SparkSQL UDFs
• Represented as Java classes
• SparkSQL UDFs are closures
• Free variables captured in class instance

var offset = 10
sqlContext.udf.register("add_offset", (i: Int) => i + offset)
sqlContext.sql("SELECT add_offset(i) FROM table").show()

public final class SparkProgramm$$anonfunrun1
extends scala.runtime.AbstractFunction1$mcII$sp
implements scala.Serializable {

public SparkProgram$$anonfunrun1(scala.runtime.IntRef);
public final int apply(int);
...

}

Usage

Class representation (simplified)

Execution in Embedded JVM

W
al

l−
cl

oc
k

tim
e

[re
la

tiv
e

to
 S

pa
rk
−o

nl
y]

1
0.46 0.51 0.65

8.91

0
1
2
3
4
5
6
7
8
9

10
(bandwidth−bound)
Range query

1
0.89

1.07

0

1

(compute−bound)
Vincenty formulae

1 0.83

3.77

0

1

2

3

4

(object creation)
Word length

Spark−only Strided execution Unstrided execution No predicate SQL predicate

• Strided execution wrapper compiled transparently
• Engine buffers wrapped as Java direct ByteBuffers
• Comparable performance to execution in Spark

and as SQL statement

JIT compilation to machine code

for i←	1	to size of input do
javaString←	CreateJavaString(inputi)
outputi ←	WordLengthUdf(javaString)
CheckForJavaException()
ReleaseJavaObject(javaString)

end

• UDF bytecode translated to LLVM IR with BugVM
• Object code dynamically loaded and executed
• Beneficial for computationally heavy UDFs that do

not create objects
• Optimizations to speed up UDFs that create objects

violate Java language guaranties

Word length UDF wrapper

Spark

UDF

Wildfire engine node

Data buffersEmbedded JVM

Bytecode
copy

Instance
copyInstance

Bytecode
Strided

execution
wrapper

Direct
ByteBuffers

Inputs

Output

Spark Wildfire

Bytecode
LLVM IR

Instance
pointerInstance

Bytecode
UDF

object
code

Wrapper
LLVM IR

BugVM
compiler

BugVM
JVM

LLVM
MCJIT

W
al

l−
cl

oc
k

tim
e

[re
la

tiv
e

to
 S

pa
rk
−o

nl
y]

0.65

0.51

0.75

0

0.5

1

(bandwidth−bound)
Range query

0.89

0.51 0.51

0

0.5

1

(compute−bound)
Vincenty formulae

0.83

0.39

1.39

0

0.5

1

1.5

(object creation)
Word length

Spark−only Embedded JVM Hand−written JIT−compiled

Contributions
• We transparently enable strided

execution of tuple-based Java
UDFs in a C++ query engine.

• The performance of our solution is
comparable to execution in Spark
and UDFs hand-written in C++.

• Our analysis shows that compiling
UDFs to machine code has only
marginal benefits.

