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Processing Java UDFs in a C++ Environment
Viktor Rosenfeld, Rene Mueller, Pınar Tözün, Fatma Özcan IBM Research – Almaden

Wildfire
• Distributed HTAP system
• Columnar, pipelined query

execution engine
• Written in C++
• Spark as user-facing front end
• Data analytics with SparkSQL

Execute Scala UDFs found in SparkSQL
queries on the Wildfire C++ engine.

Java Native Interface 
• Standard way to

connect JVM with
native code
• JNI calls have

significant overhead
• Strided execution

hides overheads

SparkSQL UDFs
• Represented as Java classes
• SparkSQL UDFs are closures
• Free variables captured in class instance

var offset = 10
sqlContext.udf.register("add_offset", (i: Int) => i + offset)
sqlContext.sql("SELECT add_offset(i) FROM table").show()

public final class SparkProgramm$$anonfun$run$1
extends scala.runtime.AbstractFunction1$mcII$sp
implements scala.Serializable {

public SparkProgram$$anonfun$run$1(scala.runtime.IntRef);
public final int apply(int);
...

}

Usage

Class representation (simplified)

Execution in Embedded JVM
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• Strided execution wrapper compiled transparently
• Engine buffers wrapped as Java direct ByteBuffers
• Comparable performance to execution in Spark 

and as SQL statement

JIT compilation to machine code

for i←	1	to size of input do
javaString←	CreateJavaString(inputi)
outputi ←	WordLengthUdf(javaString)
CheckForJavaException()
ReleaseJavaObject(javaString)

end

• UDF bytecode translated to LLVM IR with BugVM
• Object code dynamically loaded and executed
• Beneficial for computationally heavy UDFs that do 

not create objects
• Optimizations to speed up UDFs that create objects

violate Java language guaranties

Word length UDF wrapper

Spark

UDF

Wildfire engine node

Data buffersEmbedded JVM

Bytecode
copy

Instance
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Contributions
• We transparently enable strided

execution of tuple-based Java 
UDFs in a C++ query engine.

• The performance of our solution is
comparable to execution in Spark 
and UDFs hand-written in C++.

• Our analysis shows that compiling
UDFs to machine code has only
marginal benefits.


