
Performance Analysis and
Automatic Tuning of
Hash Aggregation on GPUs
Viktor Rosenfeld, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, Volker Markl

DaMoN '19, Amsterdam, The Netherlands

Hash aggregation on GPUs

Example:
• Query:
SELECT G, sum(A) FROM R GROUP BY G

• Processor: AMD A10-7850K APU.
• CPU and GPU cores integrated on the same die.

➡Aggregation on GPU cores 1.6⨉ – 4.8⨉ faster
across different group cardinalities.

2

Hash aggregation:
• Used to implement GROUP BY and DISTINCT.
• Can be significantly accelerated on the GPU.

4.22

12.75

0

2

4

6

8

10

12

14

CPU cores GPU cores

T
hr
ou

gh
pu

t
[G
B
/s
]

Aggregation over 1024 groups

Previous work
• Hash aggregation extensively studied on CPUs.

• Only a single in-depth study on GPUs:
Karnagel et al., Optimizing GPU-accelerated Group-By
and Aggregation, ADMS@VLDB, 2015

• Evaluated influence of parallelization strategies and
thread configuration based on group cardinality.

• Formulated heuristics based on a single NVIDIA
Kepler GPU.

3

Do these heuristics yield good performance on other GPUs?

Adaptive Aggregation on Chip Multiprocessors

John Cieslewicz∗†

Columbia University
johnc@cs.columbia.edu

Kenneth A. Ross†

Columbia University
kar@cs.columbia.edu

ABSTRACT
The recent introduction of commodity chip multiprocessors
requires that the design of core database operations be care-
fully examined to take full advantage of on-chip parallelism.
In this paper we examine aggregation in a multi-core en-
vironment, the Sun UltraSPARC T1, a chip multiproces-
sor with eight cores and a shared L2 cache. Aggregation is
an important aspect of query processing that is seemingly
easy to understand and implement. Our research, however,
demonstrates that a chip multiprocessor adds new dimen-
sions to understanding hash-based aggregation performance—
concurrent sharing of aggregation data structures and con-
tentious accesses to frequently used values. We also iden-
tify a trade off between private data structures assigned
to each thread versus shared data structures for aggrega-
tion. Depending on input characteristics, different aggrega-
tion strategies are optimal and choosing the wrong strategy
can result in a performance penalty of over an order of mag-
nitude. We provide a thorough explanation of the factors af-
fecting aggregation performance on chip multiprocessors and
identify three key input characteristics that dictate perfor-
mance: (1) average run length of identical group-by values,
(2) locality of references to the aggregation hash table, and
(3) frequency of repeated accesses to the same hash table
location. We then introduce an adaptive aggregation op-
erator that performs lightweight sampling of the input to
choose the correct aggregation strategy with high accuracy.
Our experiments verify that our adaptive algorithm chooses
the highest performing aggregation strategy on a number of
common input distributions.

1. INTRODUCTION
The number of transistors in microprocessors continues to

increase exponentially. Until recently, microarchitects have
used larger transistor budgets to achieve higher clock rates,

∗Supported by a U.S. Department of Homeland Security
Fellowship
†Supported by NSF Grant IIS-0534389

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
theVLDBcopyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

increase cache sizes, and exploit instruction level parallelism
(ILP). Higher clock rates have become problematic because
of power consumption and heat dissipation issues as well
as diminishing returns associated with achieving more ILP.
This has caused a paradigm shift in microarchitecture design
away from faster uniprocessors toward chip multiprocessors
(CMP). For at least the next several years, growth in proces-
sor performance will depend on increased thread level par-
allelism (TLP) [13]. Chip multiprocessors differ from sym-
metric multiprocessor (SMP) machines in that the multiple
cores on a chip often share cache resources and off-chip band-
width, whereas SMP machines only share physical memory.
On-chip cache coherency between CMP cores is much faster
than cache coherency between SMP processors.

The available commodity chip multiprocessors can be di-
vided into two groups: a “fat camp” and a “lean camp”[12].
Fat camp multiprocessors have a few wide issue, out-of-order
cores with relatively high clock rates. These cores resemble
uniprocessors and often share a large L2 cache. Lean camp
processors have simpler pipelines and execution units, typ-
ically run at somewhat slower clock rates, and are more
energy-efficient. The focus of these processors is on provid-
ing high overall chip throughput, a feature that is important
to OLAP database operations, rather than low latency for
single-threaded applications. Because the lean camp pro-
cessors are simpler, more cores fit on a processor die, thus
allowing for more on-chip thread contexts. In this paper
we investigate aggregation on a lean camp chip multiproces-
sor, the Sun UltraSPARC T1. The T1 currently offers the
most on-chip thread contexts of any commodity processor,
allowing us to explore on-chip TLP in database operations
by using many threads on real hardware. Although the T1
has some limitations, such as floating point capability, the
parallelism issues experienced with this processor are gener-
alizable to future “lean camp” processor designs. Section 5
contains a discussion of the T1.

Aggregation is a commonly used operator in database sys-
tems, particularly for queries typical of On-Line Analytical
Processing (OLAP). Aggregation is also useful in other con-
texts. In stream processing or network monitoring applica-
tions, running aggregates of stream data may be maintained
so that up-to-date summaries of the data can be generated.

When aggregates are applied to large input streams, the
aggregate operator can be a bottleneck, so it is important
to make aggregate processing as efficient as possible. At
first, aggregation seems simple to implement. Because the
T1 shares the L2 cache among its cores, a shared hash table
data structure is an obvious solution—a shared hash table

339

Scalable Aggregation on Multicore Processors

Yang Ye, Kenneth A. Ross∗, Norases Vesdapunt
Department of Computer Science, Columbia University, New York NY
(yeyang,kar)@cs.columbia.edu, nv2157@columbia.edu

ABSTRACT

In data-intensive and multi-threaded programming, the per-
formance bottleneck has shifted from I/O bandwidth to main
memory bandwidth. The availability, size, and other proper-
ties of on-chip cache strongly influence performance. A key
question is whether to allow different threads to work in-
dependently, or whether to coordinate the shared workload
among the threads. The independent approach avoids syn-
chronization overhead, but requires resources proportional
to the number of threads and thus is not scalable. On the
other hand, the shared method suffers from coordination
overhead and potential contention.

In this paper, we aim to provide a solution to performing
in-memory parallel aggregation on the Intel Nehalem archi-
tecture. We consider several previously proposed techniques
that were evaluated on other architectures, including a hy-
brid independent/shared method and a method that clones
data items automatically when contention is detected. We
also propose two algorithms: partition-and-aggregate and
PLAT. The PLAT and hybrid methods perform best overall,
utilizing the computational power of multiple threads with-
out needing memory proportional to the number of threads,
and avoiding much of the coordination overhead and con-
tention apparent in the shared table method.

1. INTRODUCTION
The number of transistors in microprocessors continues

to increase exponentially. Power considerations mean that
chip designers cannot increase clock frequencies. Instead,
chip designers have shifted the design paradigm to multiple
cores in a single processor chip. Application developers thus
face the challenge of efficiently utilizing the parallel resources
provided by these multi-core processors.

We consider data intensive computations such as aggrega-
tion, a central operation in database systems. The essential
question is whether such computations should be organized

∗This work was supported by the National Science Founda-
tion under awards IIS-0915956 and IIS-1049898.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Seventh International Workshop on Data Management
on New Hardware (DaMoN 2011), June 13, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

on multi-core processors as disjoint independent computa-
tions, or as coordinated shared computations. Independent
computations avoid coordination overhead and contention,
but require resources proportional to the number of threads.
Compared with shared computations, independent compu-
tations on n threads have effective use of only 1/nth of the
cache.

Shared computations allow multiple threads to use a com-
mon data structure, meaning that larger data sets can be
handled with the same amount of RAM or cache. This en-
hanced scalability comes with the burden of making sure
that threads do not interfere with each other, protecting
data using locks or atomic instructions. This coordination
has overheads, and can lead to contention hot-spots that
serialize execution.

1.1 Prior Work
Adaptive parallel aggregation has been investigated in the

context of shared-nothing parallelism [13]. On chip multi-
processors, previous papers have proposed a variety of meth-
ods for aggregating a large memory-resident data set [7, 4].
These papers focused on the Sun Niagara T1 and T2 archi-
tectures because they offered a particularly high degree of
parallelism on a single chip, 32 threads for the T1 and 64
threads for the T2. The high degree of parallelism made is-
sues such as contention particularly important. We examine
four previous hash-based algorithms. These proposals are:

Independent. Perform an independent hash-based aggre-
gation on disjoint subsets of the input, and combine
data from the tables at the end. Each active thread
has its own full-sized hash table.

Shared. Use a single common hash table for all threads,
and protect access to data elements by using atomic
instructions to update hash cell values.

Hybrid. In addition to a global hash table, each thread
has a small private local table that is consulted first.
If there is a match in the local table, then the up-
date happens there without atomic instructions. A
miss in the local table leads to an eviction of some
partial-aggregate element from the local table into the
global table, and the creation of a new aggregate for
the record in the local table.

Contention Detection. The programmer specifies a set of
basic operations to handle the initialization and com-
bination of aggregate values. The system automati-
cally detects contention on frequently accessed data

Optimizing GPU-accelerated Group-By and Aggregation

Tomas Karnagel
⇤

Technische Universität Dresden
Dresden, Germany

tomas.karnagel@tu-dresden.de

Rene Mueller Guy M. Lohman
IBM Research–Almaden

San Jose, CA USA
{muellerr, lohmang}@us.ibm.com

ABSTRACT
The massive parallelism and faster random memory access
of Graphics Processing Units (GPUs) promise to further
accelerate complex analytics operations such as joins and
grouping, but also provide additional challenges to optimiz-
ing their performance. There are more implementation al-
ternatives to consider on the GPU, such as exploiting dif-
ferent types of memory on the device and the division of
work among processor clusters and threads, and additional
performance parameters, such as the size of the kernel grid
and the trade-o↵ between the number of threads and the
resulting share of resources each thread will get.

In this paper, we study in depth o✏oading to a GPU
the grouping and aggregation operator, often the dominant
operation in analytics queries after joins. We primarily fo-
cus on the design implications of a hash-based implemen-
tation, although we also compare it against a sort-based
approach. Our study provides (1) a detailed performance
analysis of grouping and aggregation on the GPU as the
number of groups in the result varies, (2) an analysis of the
truncation e↵ects of hash functions commonly used in hash-
based grouping, and (3) a simple parametric model for a
wide range of workloads with a heuristic optimizer to au-
tomatically pick the best implementation and performance
parameters at execution time.

1. INTRODUCTION
Despite the recent performance gains that in-memory da-

tabase systems have brought to the relatively mature tech-
nology for processing complex SQL analytics queries, user
requirements for ever-faster performance over ever-larger da-
tabases has sparked increasing interest in exploiting Graph-
ics Processing Units (GPUs) for further accelerating these
queries. GPUs promise massive parallelism and faster mem-
ory access, particularly for the random accesses that are so

⇤Work done while author was at IBM Research Almaden.

prevalent in joins and grouping operations that dominate
the execution time in analytical queries.
As is true for traditional CPU-based database processing,

the best implementation and parameter settings for GPU
processing depend upon (a) the given SQL query, (b) the
data distribution (such as cardinality and skew), and (c)
the hardware it is run on.
But building database engines for execution on GPUs

presents many additional challenges. Often entirely new ap-
proaches and algorithms are necessary to adequately exploit
the massive parallelism GPUs o↵er. There are more im-
plementation alternatives to consider on the GPU, such as
exploiting di↵erent types of memory on the device (global
memory and local scratchpad memory) versus the CPU’s
memory, and the division of work among processor clusters
and threads. To make matters worse, there are also more
performance parameters, such as the size of the kernel grid
and the trade-o↵ between the number of threads and the
resulting share of resources each thread will get. Grouping
and aggregation, e.g., for the SQL “GROUP BY” clause, is
one of the most time-consuming operators in any database
system, especially when performing cubing in On-Line Ana-
lytic Processing (OLAP) systems, and dominates the perfor-
mance time in systems that encourage de-normalized (pre-
joined) schemas for performance reasons [9, 27] or that even
do not support joins at all, such as “NoSQL” systems, e.g.,
MongoDB.
In this paper, we study in depth o✏oading the grouping

operator to a GPU. We primarily focus on the design im-
plications of a hash-based implementation, although we also
compare it against a sort-based approach in Section 5.2. Our
study provides (1) a detailed performance analysis of group-
ing and aggregation on the GPU as the number of groups
in the result varies, (2) an analysis of the truncation e↵ects
of hash functions commonly used in hash-based grouping,
and (3) a simple parametric model for a wide range of work-
loads with a heuristic optimizer to automatically pick the
best implementation and performance parameters at execu-
tion time. We make two simplifying assumptions. First, we
assume that the intermediate data structures, such as the
hash tables, fit into the device memory of the GPU so that
no spilling to main memory or disk occurs. Second, we make
the simplifying assumption that there are no queries execut-
ing concurrently on the GPU. We do not think that these
simplifications are too restrictive in terms of the workloads
that can be run. First of all, GPUs today come with sig-
nificant memory – up to 12 or 24GB. Second, since OLAP
workloads seek to minimize the response time, it makes sense

1

Performance analysis of hash
aggregation on various GPUs

4

Part 1

Tested GPUs

5

GPU Microarchitecture Integration

Tesla K40m Kepler PCIe 3.0

GeForce GTX 980 Maxwell PCIe 3.0

GeForce GTX 1080 Pascal PCIe 3.0

Tesla V100 Volta NVLink 2.0

A10-7850K Graphics Core Next 2nd Gen. on die

Radeon R9 Fury Graphics Core Next 3rd Gen. PCIe 3.0

Parallelization strategies

6

SHARED

INDEPENDENT

WORKGROUPLOCAL

Hash
table

Thread

Thread

Thread

Thread

Hash
table

HT

HT

HT

HT

Thread

Thread

Thread

Thread

Local
memory

Hash
table

HT

HT

Thread

Thread

Thread

Thread

• Concurrent accesses to same hash
bucket resolved with atomics.

• SHARED and INDEPENDENT also
commonly used on CPUs.

• WORKGROUPLOCAL uses fast local
GPU memory.

• Fastest strategy is data and query
dependent (amount of contention
and cache efficiency).

How do these parallelization strategies perform on different GPUs?

Parallelization strategy Shared Independent WorkGroupLocal

Local L2

PCIe 3.0

Tesla K40m (Kepler)

20 24 28 212 216 220 224 228

0

3

6

9

0

20

40

60

80

Number of groups

B
ill
io
n
tu
pl
es

p
er

se
co
nd

G
B
/s

Local L2

NVLink 2.0

Tesla V100 (Volta)

20 24 28 212 216 220 224 228

0

20

40

60

80

0

200

400

600

Number of groups

B
ill
io
n
tu
pl
es

p
er

se
co
nd

G
B
/s

Parallelization strategy Shared Independent WorkGroupLocal

Local L2

PCIe 3.0

Tesla K40m (Kepler)

20 24 28 212 216 220 224 228

0

3

6

9

0

20

40

60

80

Number of groups

B
ill
io
n
tu
pl
es

p
er

se
co
nd

G
B
/s

Local L2

NVLink 2.0

Tesla V100 (Volta)

20 24 28 212 216 220 224 228

0

20

40

60

80

0

200

400

600

Number of groups

B
ill
io
n
tu
pl
es

p
er

se
co
nd

G
B
/s

Parallelization strategy Shared Independent WorkGroupLocal

Local L2

PCIe 3.0

Tesla K40m (Kepler)

20 24 28 212 216 220 224 228

0

3

6

9

0

20

40

60

80

Number of groups

B
ill
io
n
tu
pl
es

p
er

se
co
nd

G
B
/s

Local L2

NVLink 2.0

Tesla V100 (Volta)

20 24 28 212 216 220 224 228

0

20

40

60

80

0

200

400

600

Number of groups

B
ill
io
n
tu
pl
es

p
er

se
co
nd

G
B
/s

Parallelization strategies

7

SELECT G, sum(A)
FROM R GROUP BY G;

INDEPENDENT aggregation not competitive on newer GPUs that implement fast atomics on local memory.

LOCAL is best

Different region

INDEPENDENT is best

Native atomics on local
memory (since Maxwell)

Thread configurations

8

• Number of threads determined by two
variables (OpenCL terminology).

• Work groups per compute unit
• Work items per work group

• Performance influenced by hardware
and kernel properties.

• Warp size, register file, TLB cache, ...
• Number of registers used in kernel,

local memory usage, ...

54.43

1.42

1.59

8.71

33.65

1.14

6.04

21.18

1.10

3.08

13.54

3.48

1.49

1.50

1.00

2.22

1.51

1.09

1.49

1.48

1.40

1.12

3.53

1.48

1.51

1.00

2.25

1.51

1.09

1.50

1.50

1.41

1.13

3.60

1.50

1.52

1.01

2.31

1.52

1.10

1.54

1.51

1.42

1.14

27.12

1.51

1.14

4.52

16.86

1.10

3.13

10.68

1.42

1.63

6.97

3.52

1.49

1.50

1.00

2.24

1.51

1.10

1.50

1.49

1.41

1.13

3.56

1.51

1.52

1.01

2.28

1.52

1.10

1.53

1.51

1.42

1.14

13.69

1.50

1.09

2.34

8.62

1.42

1.63

5.54

1.51

1.14

3.64

3.51

1.46

1.50

1.01

2.24

1.50

1.10

1.50

1.49

1.40

1.12

3.54

1.49

1.52

1.01

2.25

1.51

1.10

1.50

1.51

1.41

1.13

7.00

1.51

1.42

1.30

4.43

1.51

1.14

2.88

1.51

1.10

1.90

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

Faster Slower

Can we find optimal thread configurations across GPUs?

4.0

9.6
7.5

10.5
20.8

1.3

3.4

2.5
1.8

1.2
1.2

2.7

2.1
1.8

1.1
4.6

2.4
7.2

1.6
2.4

1.2

1.2

1.5

1.4
1.3

1.2

4.2

16.9

2.8
1.8

Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100 A10-7850K Radeon R9 Fury

0 10 20 0 1 2 3 4 0 1 2 3 0.0 2.5 5.0 7.5 10.0 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20

Radeon R9 Fury

A10-7850K

Tesla V100

GeForce GTX 1080

GeForce GTX 980

Tesla K40m

Normalized runtime (di↵erent scales)

Processor

Performance penalty
• When a thread configuration optimized for a specific GPU (rows) is executed on another GPU (columns).

9

Full evaluation takes hours. How can we find fast thread configurations efficiently?

The optimal thread configuration is highly GPU-dependent.

4.0

9.6
7.5

10.5
20.8

1.3

3.4

2.5
1.8

1.2

3.4

1.2

2.7

2.1
1.8

1.1
2.7 4.6

2.4
7.2

1.6
2.4

4.6

1.2

1.2

1.5

1.4
1.3

1.2

1.2

4.2

16.9

2.8
1.8

4.2

Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100 A10-7850K Radeon R9 Fury

0 10 20 0 1 2 3 4 0 1 2 3 0.0 2.5 5.0 7.5 10.0 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20

Radeon R9 Fury

A10-7850K

Tesla V100

GeForce GTX 1080

GeForce GTX 980

Tesla K40m

Normalized runtime (di↵erent scales)

Processor

7.5

20.8
10.5

9.6

4.0
1.8

1.2

2.5

3.4

1.3
1.8

1.1

2.1

2.7

1.2
7.2

2.4
1.6

2.4

4.6

1.3
1.4

1.5

1.2

1.2
16.9

1.8
2.8
4.2

1.2

Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100 A10-7850K Radeon R9 Fury

0 10 20 0 1 2 3 4 0 1 2 3 0.0 2.5 5.0 7.5 10.0 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20

Radeon R9 Fury

A10-7850K

Tesla V100

GeForce GTX 1080

GeForce GTX 980

Tesla K40m

Normalized runtime (di↵erent scales)

Processor

SELECT G, sum(A)
FROM R GROUP BY G;

Finding fast
thread configurations

10

Part 2

Thread configuration search space

11

• Search space: Tesla K40m, SHARED aggregation, ca. 8 million groups.

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

Influence regions of local minima

1.42

1.59

8.71

1.14

6.04

1.10

3.08

3.48

1.49

1.50

1.00

2.22

1.51

1.09

1.49

1.48

1.40

1.12

3.53

1.48

1.51

1.00

2.25

1.51

1.09

1.50

1.50

1.41

1.13

3.60

1.50

1.52

1.01

2.31

1.52

1.10

1.54

1.51

1.42

1.14

1.51

1.14

4.52

1.10

3.13

1.42

1.63

6.97

3.52

1.49

1.50

1.00

2.24

1.51

1.10

1.50

1.49

1.41

1.13

3.56

1.51

1.52

1.01

2.28

1.52

1.10

1.53

1.51

1.42

1.14

1.50

1.09

2.34

8.62

1.42

1.63

5.54

1.51

1.14

3.64

3.51

1.46

1.50

1.01

2.24

1.50

1.10

1.50

1.49

1.40

1.12

3.54

1.49

1.52

1.01

2.25

1.51

1.10

1.50

1.51

1.41

1.13

7.00

1.51

1.42

1.30

4.43

1.51

1.14

2.88

1.51

1.10

1.90

54.43

33.65

21.18

13.54

27.12

16.86

10.68

13.691

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

Normalized runtime

1.42

1.59

8.71

1.14

6.04

1.10

3.08

3.48

1.49

1.50

1.00

2.22

1.51

1.09

1.49

1.48

1.40

1.12

3.53

1.48

1.51

1.00

2.25

1.51

1.09

1.50

1.50

1.41

1.13

3.60

1.50

1.52

1.01

2.31

1.52

1.10

1.54

1.51

1.42

1.14

1.51

1.14

4.52

1.10

3.13

1.42

1.63

6.97

3.52

1.49

1.50

1.00

2.24

1.51

1.10

1.50

1.49

1.41

1.13

3.56

1.51

1.52

1.01

2.28

1.52

1.10

1.53

1.51

1.42

1.14

1.50

1.09

2.34

8.62

1.42

1.63

5.54

1.51

1.14

3.64

3.51

1.46

1.50

1.01

2.24

1.50

1.10

1.50

1.49

1.40

1.12

3.54

1.49

1.52

1.01

2.25

1.51

1.10

1.50

1.51

1.41

1.13

7.00

1.51

1.42

1.30

4.43

1.51

1.14

2.88

1.51

1.10

1.90

54.43

33.65

21.18

13.54

27.12

16.86

10.68

13.69

1.00

1.48

1.00

1.50

1.09

1.46

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

Normalized runtime

• Search space appears convex but has multiple local minima.

Performance plateaus

12

7.40

7.45

7.50

2x256 4x128 8x64

Thread configuration

R
un

ti
m
e
[m

s]

Absolute runtimes
differ by less than 0.5%

• Performance plateau: Runtimes of two
adjacent thread configurations differ by
less than a small delta.

• Nearly convex: Single local minimum if
we account for runtime variation.

Thread configuration search spaces are nearly convex.

1.42

1.59

8.71

1.14

6.04

1.10

3.08

3.48

1.49

1.50

1.00

2.22

1.51

1.09

1.49

1.48

1.40

1.12

3.53

1.48

1.51

1.00

2.25

1.51

1.09

1.50

1.50

1.41

1.13

3.60

1.50

1.52

1.01

2.31

1.52

1.10

1.54

1.51

1.42

1.14

1.51

1.14

4.52

1.10

3.13

1.42

1.63

6.97

3.52

1.49

1.50

1.00

2.24

1.51

1.10

1.50

1.49

1.41

1.13

3.56

1.51

1.52

1.01

2.28

1.52

1.10

1.53

1.51

1.42

1.14

1.50

1.09

2.34

8.62

1.42

1.63

5.54

1.51

1.14

3.64

3.51

1.46

1.50

1.01

2.24

1.50

1.10

1.50

1.49

1.40

1.12

3.54

1.49

1.52

1.01

2.25

1.51

1.10

1.50

1.51

1.41

1.13

7.00

1.51

1.42

1.30

4.43

1.51

1.14

2.88

1.51

1.10

1.90

54.43

33.65

21.18

13.54

27.12

16.86

10.68

13.691

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

• Prune branches that are slower than
the fastest thread configuration found
so far.

Finding fast thread configurations

13

• Start with initial thread configuration.1

• Follow gradient in search space to
local minimum.

2

• Branch search path at performance
plateaus.

• Stop at minimum when there are no
more branches.

4

5

Approach: Follow gradient and branch search path at performance plateaus.

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p 1.101.10

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

1.14

1.10

1.14

1.10

1.42

1.09

1.42

1.10

1.09

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

1.14

1.10

1.14

1.10

1.42

1.09

1.42

1.14

1.42

1.10

1.10

1.09

1.10

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

1.14

1.10

1.01

1.10

1.42

1.14

1.10

1.42

1.09

1.42

1.14

1.42

1.14

1.10

1.10

1.09

1.10

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

3

1.14

1.10

1.00

1.09

1.12

1.00

1.09

1.13

1.01

1.10

1.42

1.14

1.14

1.10

1.42

1.00

1.10

1.13

1.01

1.10

1.14

1.09

1.42

1.14

1.01

1.10

1.12

1.01

1.10

1.13

1.42

1.30

1.14

1.10

1.90

1.10

1.00

1.09

1.10

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

Work groups per compute unit

W
or
k
it
em

s
p
er

w
or
k
gr
ou

p

1

2

3

4

5

Runtime of found implementation

14

Radeon R9 Fury

A10-7850K

Tesla V100

GeForce GTX 1080

GeForce GTX 980

Tesla K40m

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Normalized runtime

Processor

Follow to local minimum Branch at performance plateaus

Radeon R9 Fury

A10-7850K

Tesla V100

GeForce GTX 1080

GeForce GTX 980

Tesla K40m

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Normalized runtime

Processor

Follow to local minimum Branch at performance plateaus

Summary
1. INDEPENDENT aggregation is not competitive on newer GPUs that implement fast atomics on local

memory. Use WORKGROUPLOCAL aggregation instead.

2. The optimal thread configuration is highly dependent on the executing GPU.

15

4. NVIDIA GPUs exhibit a low degree of runtime variation. AMD GPUs exhibit a high degree of
runtime variation.

5. Aggregation performance is limited by global GPU memory latency (and not transfer bandwidth)
when the hash table exceeds the L2 cache.

Heuristics derived from analyzing a single GPU
are not generalizable to other GPUs.

3. Thread configuration search spaces are nearly convex, i.e., they have a single local minimum
when we account for runtime variation.

Follow gradient and branch at performance plateaus
to find fast thread configurations.

