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Abstract

Today’s computing systems are highly heterogeneous, both in terms of the hardware
that they are built from and the software that they run. This heterogeneity provides
key benefits, since specialized processors provide the performance necessary to process
increasing amounts of data, and specialized software system enable programmers with
different needs and expertise to extract knowledge from data. However, the integration of
heterogeneous hardware and software into a cohesive system poses many challenges, e.g.,
how to distribute work among heterogeneous processors, how to reduce the complexity
of programming heterogeneous processors, and how to reduce overheads when moving
data and computation between different software systems.

In this thesis, we investigate how heterogeneous hardware and software impacts query
processing, and develop tools to manage this heterogeneity.

In our first contribution, we survey query processing systems that target both CPUs
and GPUs. We develop a classification scheme to categorize how to distribute query
processing tasks on these processors, and review techniques to program CPUs and GPUs
in a query processing system, and to overcome the data transfer bottleneck. Our analysis
shows that systems with dedicated GPUs require different strategies to distribute the
workload than systems with integrated GPUs.

In our second contribution, we investigate how a query processing systems can auto-
matically adapt its low-level operator implementation to the processor it runs on. First,
we perform an extensive experimental analysis of different implementations of two data
processing operators on various CPUs, GPUs, and an Intel Xeon Phi coprocessor. We
find that every processor requires specific implementations to achieve high performance,
that heuristics derived from the analysis of one processor are not necessarily transferable
to others, and that some processors are more difficult to optimize for than others. Then,
we develop two algorithms to find a fast operator implementation at runtime, which
differ in the amount of information they incorporate during their search. Our evaluation
of these algorithms shows that it is necessary to exploit information about processor
characteristics to reduce the search time for a fast implementation.
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In our third contribution, we focus on integrating query processing systems that run
on the Java Virtual Machine (JVM) and those that execute native machine code. Con-
cretely, we develop two approaches how to execute Java-based UDFs in a query process-
ing engine written in C++. First, we transparently transform a tuple-based UDF into a
UDF that processes an entire batch, which effectively eliminates the overhead of moving
execution from the C++ engine into an embedded JVM. This approach works well if
the UDF creates many objects, including Java strings. Second, we translate the UDF
bytecode to LLVM IR and link it directly with the C++ engine. This approach works
well if the UDF is compute-intensive.

Our investigation into a variety of heterogeneous hardware and software scenarios
shows that we often face similar challenges when integrating them. Thus, the techniques
investigated and developed in this thesis constitute effective building blocks to extract
performance from today’s heterogeneous computing systems.
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Zusammenfassung

Heutige Computersysteme sind außerordentlich heterogen. Sie bestehen aus vielseitig
spezialisierter Hardware und führen unterschiedlichste Softwaresysteme aus. Einer-
seits bietet diese Heterogenität wesentliche Vorteile, da z.B. spezialisierte Prozessoren
die notwendige Leistung für die Verarbeitung wachsender Datenmengen bereitstellen
und spezialisierte Softwaresysteme Programmierern mit unterschiedlichen Anforderun-
gen und Fachkenntnissen ermöglichen, Wissen aus Daten zu erschließen. Andererseits
birgt die Integration heterogener Hard- und Software aber auch viele Herausforderun-
gen. So stellt sich beispielweise die Frage, wie die Arbeitsteilung zwischen heterogenen
Prozessoren erfolgen soll, wie sich die Komplexität der Programmierung heterogener
Prozessoren reduzieren lässt und wie der Overhead bei der Übertragung von Daten und
der Verteilung von Berechnungen zwischen verschiedenen Softwaresystemen minimiert
werden kann.

In dieser Arbeit untersuchen wir, wie heterogene Hard- und Software die Anfragever-
arbeitung beeinflusst, und entwickeln Werkzeuge, um diese Heterogenität zu bewältigen.

Im ersten Beitrag untersuchen wir Systeme, die die Anfrageverarbeitung auf CPUs
und GPUs aufteilen. Hierfür entwickeln wir ein Klassifikationsschema, um Strategien
zur Verteilung von Teilaufgaben der Anfrageverarbeitung auf diesen Prozessoren zu kat-
egorisieren. Darüber hinaus untersuchen wir Methoden um die Architektur eines An-
fragesystems an heterogene Prozessoren anzupassen und um langsame Datentransfers
zwischen CPU und GPU zu vermeiden. Unsere Analyse zeigt, dass Systeme mit dedi-
zierten GPUs andere Strategien zur Arbeitsaufteilung erfordern als Systeme mit integri-
erten GPUs.

Im zweiten Beitrag untersuchen wir, wie ein Anfrageverarbeitungssystem die Imple-
mentierung von datenverarbeitenden Operatoren automatisch an den Prozessor adap-
tieren kann, auf dem es ausgeführt wird. Hierfür führen wir zunächst eine umfangreiche
experimentelle Analyse verschiedener Implementierungsvarianten für zwei Operatoren
auf verschiedenen CPUs, GPUs und einem Intel Xeon Phi Coprozessor durch. Un-
sere Analyse zeigt, dass jeder Prozessor eine spezifische Implementierung benötigt, um
Daten schnell zu verarbeiten. Darüber hinaus stellen wir fest, dass Heuristiken, die
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aus der Analyse eines bestimmten Prozessors abgeleitet wurden, nicht unbedingt auf
andere Prozessoren übertragbar sind und dass einige Prozessoren schwieriger zu opti-
mieren sind als andere. Anschließend entwickeln wir zwei Algorithmen, die es einem An-
fragesystem ermöglichen, automatisch eine schnelle Operatorimplementierung zu finden.
Die Algorithmen unterscheiden sich in der Art der Informationen, die sie bei der Suche
berücksichtigen. Unsere Auswertung dieser Algorithmen zeigt, dass es notwendig ist, In-
formationen über die Eigenschaften des Prozessors zu berücksichtigen, um die Suchzeit
für eine schnelle Implementierung zu reduzieren.

Im dritten Beitrag befassen wir uns mit der Integration von Anfrageverarbeitungssys-
temen, die auf der Java Virtual Machine laufen, und solchen, die nativen Maschinencode
ausführen. Konkret entwickeln wir zwei Ansätze, um Java-basierte UDF auf einem in
C++ geschriebenen Anfrageverarbeitungssystem auszuführen. Im ersten Ansatz wan-
deln wir eine UDF, die für jedes Tupel ausgeführt wird, in eine UDF um, die einen
Block von Tupel verarbeitet, wodurch der Kontextwechsel-Overhead zwischen der Aus-
führung von C++-Code und der UDF eliminiert wird. Dieser Ansatz funktioniert gut
für UDFs, die viele Objekte erzeugen, einschließlich Java-Strings. Im zweiten Ansatz
übersetzen wir die Java UDF in Maschinencode und führen sie direkt im C++ Anfrage-
bearbeitungssystem aus. Dieser Ansatz funktioniert gut für rechenintensive UDFs.

Unsere Untersuchung einer Reihe von Szenarien heterogener Hard- und Software zeigt,
dass wir bei der Integration dieser Systeme oft vor ähnlichen Herausforderungen stehen.
Somit stellen die in dieser Arbeit erarbeiteten Methoden wirksame Bausteine dar, um
die Leistungsfähigkeit heutiger heterogener Rechensysteme auszunutzen.
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1
Introduction

1.1. Heterogeneous hardware and software in the era of
big data

Big data increasingly shapes decision making in the sciences, industry, and society as a
whole [2, 280, 316]. The modern scientific toolbox includes data-driven exploration as
an important tool in addition to experimentation, modeling, and simulation [126]. For
businesses, data constitute an essential factor of production, similarly to raw materials
and human labor [193]. Governments rely on data to increase their operational efficiency
and to set public policy [157]. Heterogeneous hardware and software systems underpin
these societal trends.

The term big data puts the focus primarily on the amount of data. Indeed, the amount
of digital data has grown exponentially since the early 2000s [127]. The world wide web,
particularly e-commerce and social media web sites, sensors in mobile devices and the
emerging Internet of Things, large scientific experiments, and traditional retail businesses
generate datasets that are measured in terabytes and petabytes. However, the era of
big data would not be possible without two concurrent trends in computing [2]. First,
the exponential growth in computing performance [68], as well as open source software
systems, have provided the resources and tools to store and process this abundance of
data at greatly reduced costs. And second, data has become democratized. More and
more people work with data, not just database administrators and IT specialists, but
also business managers, scientists, journalists, and consumers.

When we look at the computing infrastructure to process big data, we find that hard-
ware and software systems are highly heterogeneous [347]. On the hardware side, com-
puting systems contain a large variety of microprocessors with different capabilities, e.g.,
multi-core processors, graphic processing units (GPUs), digital signal processors (DSPs),
tensor processing units (TPUs), or field-programmable gate arrays (FPGAs) [347]. On
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the software side, data scientist work with a variety of software environments and pro-
gramming languages [140]. In part, this heterogeneity is the result of market forces,
as hardware manufacturers and software developers continuously refine their products.
These market forces in turn are shaped by fundamental trade-offs, which constrain the
performance of the computing infrastructure, as products are designed for different mar-
ket segments. In a nutshell, manufacturers of microprocessors have to trade off micro-
processor performance against energy efficiency, whereas software environments trade off
application performance against programmer productivity and supported functionality.

This heterogeneity is both a benefit and a challenge. While it enables the tools that
allow a diverse set of users to process large data sets, it also increases the complexity of
the computing infrastructure. Therefore, in this thesis, we investigate how heterogeneous
hardware and software impacts query processing, and develop tools to manage this
heterogeneity. Before we describe this thesis’ goals and contributions, we motivate the
forces that drive hardware and software heterogeneity in more detail.

1.1.1. Drivers of hardware heterogeneity

One of the main constraints on the performance of computing hardware, and specifically
of microprocessors, is their power consumption. Since the early 2000s, it has not been
economical to increase microprocessor performance by simply increasing their operating
speed. To overcome this so-called power wall, the microprocessor industry has pur-
sued three strategies to continue the exponential growth of microprocessor performance.
Specifically, modern microprocessors (a) parallelize execution on multiple independent
processing cores, and they are either (b) specialized to meet specific application demands,
or (c) integrate multiple specialized processing cores.

As a consequence of these three strategies, the processors deployed in today’s com-
puting systems are highly heterogeneous. They contain multiple processing cores with
diverse characteristics and integrate them in different ways. We can find such heteroge-
neous systems across the entire range of computing systems, from super computers [321]
and cloud infrastructure [15, 92, 202], to consumer laptops [21], mobile devices [255],
and embedded industry applications [290]. To achieve high performance, applications
running on modern computing system have to take their heterogeneous nature into ac-
count and use the available compute resources effectively. They have to match diverse
application demands to the most suitable processing core and adapt their algorithms
and implementations to the characteristics of the processor that they run on.
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The power wall. In the 1980s and 1990s, two mechanisms drove the exponen-
tial growth in microprocessor performance. First, processor manufacturers relied on
Dennard scaling [67] to reduce the size of transistors and increase their operating fre-
quency. A higher operating frequency means that a microprocessor can execute the
same instructions in less time. Second, processors manufacturers exploited the increas-
ing transistor budget to implement large caches as well as microarchitectural advances,
such as deep pipelines, branch prediction and speculative execution [125]. These tech-
niques further reduce the latency of individual instructions. Thus, even when programs
were left unchanged, their performance increased over time just by running them on a
faster processor. Specifically, sequential processor performance doubled every 2.5 years
between 1978 and 1986 and every 1.5 years between 1986 and 2003 [124]. Unfortunately,
this is no longer the case.

An undesirable side effect of increasing the sequential performance of microproces-
sors is a corresponding increase in their power consumption, since power consumption
scales linearly with operating frequency [125]. By 2003, high-performance commodity
CPUs operated at 3 GHz and drew more than 100 Watts [273]. Since then, processor
frequencies have stagnated [273]. Increasing them further would produce excessive heat
and require cooling solutions that are impractical and uneconomical. Furthermore, the
microarchitectural techniques that reduce the latency of individual instructions are not
energy-efficient. Over multiple processor generations, their impact on power consump-
tion is quadratic compared to their impact on sequential performance [100].

Parallelization. Even though processor frequencies have stagnated, the size of tran-
sistors is still shrinking and the number of transistors of modern microprocessors is still
increasing [273]. Processor manufacturers utilize this transistor budget to integrate mul-
tiple independent processing cores, which run in parallel, in a single microprocessor.
Thus, modern processors rely on exploiting data-level parallelism and task-level paral-
lelism to achieve high performance.

Specialization. Modern multi-core CPUs integrate a moderate number of parallel
processing cores, but these cores are still optimized for sequential performance in order
to speed up the inherently sequential parts of an application [39]. Consequently, multi-
core CPUs are a good fit for applications which are latency-critical or dominated by
sequential execution paths. However, not all applications can be characterized this way.

To meet specific application demands, processor manufacturers have created special-
ized microprocessor designs. For example, GPUs are optimized for throughput perfor-
mance to speed up applications that are highly data-parallel [182]; TPUs are optimized
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for low-precision matrix operations which are commonly found in deep learning applica-
tions [138]; FPGAs allow developers to create processors that are customized to a specific
application [79]; digital signal processors (DSPs) process (digitized) analog signals, such
as sounds, speech, images, videos, or radar pulses [73]; neuromorphic processors [66, 197]
emulate the behaviors and properties biological neurons; and molecular dynamics proces-
sors [232, 285] simulate biological molecules at the atomic level. Specialized processors
avoid allocating transistors on hardware features that do not fit application demands,
which enables them to achieve higher performance than general-purpose processors while
staying in the same power budget.

Integration. GPUs, TPUs, and FPGAs are originally designed as dedicated co-
processors, which are connected to a traditional multi-core CPU over a system bus.
Alternatively, multiple specialized processing cores can also be integrated into a single
asymmetric and/or heterogeneous multi-core processor. Asymmetric multi-core proces-
sors (AMPs) combine a small number of complex high-performance cores with a large
number of simple low-performance cores to speed up both the latency-critical sequential
parts as well as the throughput-critical parallel parts of an application [128]. Compared
to traditional multi-core processors, in which all cores are of the same design, AMPs can
achieve better overall performance within the same transistor budget [128].

Heterogeneous multi-core processors, which integrate specialized processing cores to
support specific applications in a highly power-efficient way, achieve even better perfor-
mance than AMPs for parallel workloads [57]. Such processors can reduce the operating
frequency of different processing cores to balance the power budget according to applica-
tion demands [41], or turn off individual cores completely when they are not in use [168].
Moving data between specialized cores is also faster and requires less energy than moving
it between the CPU and a dedicated coprocessor, because the cores are physically closer
together and are connected by an on-chip interconnect [21].

1.1.2. Drivers of software heterogeneity

We can identify at least three factors that lead to heterogeneous software systems. First,
specialized computing hardware, such as the specialized microprocessors we discussed in
the previous section, has to be programmed with dedicated programming tools. Second,
programmers themselves are not a homogeneous group and require different software
environments to be productive, depending on their skill set and the priorities imposed
by the problem they want to solve. And third, the complexity and variety of data
analysis and other programming tasks often require specialized tools at different stages.
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As a consequence, we have to integrate separate software components into a heteroge-
neous software ecosystem, in order to enable different users perform complex data anal-
ysis tasks in a way that meets their skills and their performance requirements. Consider,
for example, the ecosystem created around Apache Hadoop [309]. Since its initial release,
a large number of software systems have been released, which either build upon Hadoop,
or provided specialized services, e.g., Apache Hive [310], a distributed data warehouse;
Apache Mahout [311], a distributed machine learning library; and Zookeeper [314], a
coordination service for distributed applications. Later data analytics systems, e.g.,
Apache Spark [345] and Apache Flink [51], improve on Hadoop’s capabilities, but main-
tain a high degree of compatibility. For example, they can interoperate with services such
as the Hadoop Distributed File System (HDFS) [287], use common data formats such
as Apache Avro [307] and Apache Parquet [312], and are even able to reuse user-defined
functions (UDFs) written for Hadoop [59].

Heterogeneous hardware. The specialization of computing hardware directly
leads to heterogeneous software environments. For each processor type, there are low-
level programming languages or language constructs, which provide the necessary pro-
gramming abstractions to match the processor design, and offer a high degree of control
over the hardware. For example, on multi-core CPUs, pthreads [210] and OpenMP [65]
are C language constructs to implement task parallelism and data parallelism, respec-
tively; NVIDIA provides CUDA [211] as a dedicated programming environment for
NVIDIA GPUs; similarly, Google provides TensorFlow [5] to program TPUs; and cir-
cuits for FPGAs are often implemented in the low-level hardware description languages
Verilog [320] and VHDL [22]. Consequently, programmers have to employ multiple pro-
gramming frameworks to develop applications which utilize specialized processors in
heterogeneous computing systems.

Diverse user requirements. Programmers are a very diverse group with different
skill sets, different motivations to write software, and different performance needs. We
can distinguish between novice and expert programmers; amateurs and professionals; as
well as regular programmers, for whom software development is the main professional
activity, and casual programmers, such as data scientists or researchers, who write pro-
grams as a means to some other professional end [158]. These groups require different
programming environments to work productively and will trade off application perfor-
mance to a different degree. Expert programmers prefer programming languages that let
them concisely express an abstract solution using high-level constructs, but also provide
low-level control over the hardware, which is the key to predictable performance [246].
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In contrast, casual programmers often choose high-level programming languages with
rich libraries that allow them to quickly develop solutions to their problems [131]. For
example, Python [254] is a popular programming language among data scientists because
it includes powerful libraries for statistical analysis, machine learning, and data mining
applications [140, 251]. These libraries provide so much value that data scientists choose
Python even though it is about 50× slower than an equivalent, unoptimized C program,
and 60000× slower than an optimized version [124].

High-level languages, such as Python, target traditional CPUs and do not support
specialized processors out of the box. Libraries in these languages have to achieve two
objectives. On the one hand, they have to provide the domain-specific functionality re-
quired by casual programmers, such as data scientists. On the other hand, they have to
transparently support multiple processing cores and specialized processors, so that data
scientists can benefit from improved application performance. Consequently, modern
heterogeneous software environments bridge high-level and low-level programming lan-
guages, in order to resolve the tension between programmer productivity and application
performance.

Complexity of data analysis tasks. The complexity and variety of today’s data
analysis tasks are additional factors which results in heterogeneous software environ-
ments. Commonly expressed by the phrase “one size does not fit all”, the demands
of a particular application scenario, such as analytical processing or stream processing,
prompt a specific software implementation to include functionality that is of no use to
other applications, or even degrades their performance [301]. Moreover, a data process-
ing task may benefit from, or even require, the combination of multiple software systems
in a complex data processing pipeline [10, 143]. For example, if the data is stored in
multiple locations and/or formats, or if the system in which the data is stored does not
support a specific analysis method, a complex data processing pipeline has to involve
multiple systems in order to complete the task. In other cases, splitting a complex
task into smaller steps and executing each step on a specialized system improves overall
performance.

1.2. Thesis goals and contributions

As we have seen, heterogeneous hardware and software are an integral part of today’s
computing systems. This heterogeneity is both a challenge and an opportunity for query
processing. On the one hand, system developers have to adapt query processing code
to exploit the computing power of specialized processors, in order to deal with the
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increasing processing demands of big data. On the other hand, integrating multiple
software systems to improve user productivity while retaining high performance, is the
key to solve complex data processing tasks and provide access to many users, in order
to further democratize data analysis. Therefore, this thesis has the following two goals.

(1) Investigate how heterogeneous hardware and software impacts query processing.

(2) Develop techniques to achieve high query processing performance on heteroge-
neous hardware and software systems.

Thesis goals

Since hardware and software heterogeneity is a very broad topic, we focus on three
specific scenarios to reduce the scope of this thesis. In the following, we discuss the
heterogeneous aspect of each scenario, develop the specific research goals and questions,
and summarize our results and contributions.

1.2.1. Query processing on heterogeneous CPU/GPU systems

In the first scenario, we investigate the impact of heterogeneous processing architectures
on query processing.

Heterogeneous aspect. A heterogeneous CPU/GPU system is a computing sys-
tem which contains both CPUs and GPUs as processors. We call a query processing
system which exploits both CPUs and GPUs for query processing a heterogeneous query
processing system. A heterogeneous query processing system has to address three chal-
lenges in order to effectively exploit the processing power of heterogeneous CPU/GPU
systems.

(1) CPUs and GPUs are optimized for different applications and therefore have dif-
ferent capabilities. It follows that some tasks of a query processing system may run
faster on the CPU and other tasks may run faster on the GPU. A heterogeneous query
processing system has to distribute the query processing workload on processors with
different capabilities in a way that exploits the strengths of each processor and avoids
their weaknesses.

(2) CPUs and GPUs have to be programmed differently. A major difference between
both processors is how they employ multiple threads to solve a complex problem. On
CPUs, threads typically work on independent subproblems, whereas on GPUs, groups
of threads have to cooperate to achieve high performance. A heterogeneous query pro-

7



cessing system has to support implementations for multiple processors efficiently, i.e.,
without increasing development and maintenance costs.

(3) CPUs and GPUs can be integrated in different ways which affects the speed at
which the GPU can access data in memory. Dedicated GPUs must transfer data from
system main memory over a slow interconnect before they can process it. A heteroge-
neous query processing system has to overcome this data transfer bottleneck.

Research goals. In this part of the thesis, we study how heterogeneous query
processing systems address these three challenges. Specifically, we focus on the following
research goals.

(1.1) Review and classify techniques to distribute a query processing workload on
CPUs and GPUs, to program heterogeneous CPU/GPU systems efficiently,
and to overcome the data transfer bottleneck.

(1.2) Classify heterogeneous query processing systems according to the techniques
which they employ, and identify best practices and open research problems.

Research goals (first scenario)

Contributions. In this part of the thesis, we make the following contributions.
(1) For our review, we conduct a survey of the academic literature on query processing

on heterogeneous CPU/GPU systems. Our survey covers a diverse set of complete query
processing systems, e.g., relational query processors, stream processing systems, hybrid
analytical/transactional systems, and key value stores; as well as implementations which
perform a specific query processing tasks, including joins, sorting, indexing, and spatio-
temporal query processing.

(2) We develop a classification scheme to categorize techniques to distribute a query
processing workload on CPUs and GPUs.

(3) Based on this classification scheme, and a review of the techniques to program
heterogeneous CPU/GPU systems efficiently and to overcome the data transfer bottle-
neck, we categorize the surveyed query processing systems. This classification allows
us to identify common strategies to overcome performance bottlenecks, as well as to
identify query processing tasks which have not yet been investigated on heterogeneous
CPU/GPU systems.

(4) We summarize the history of employing GPU hardware for query processing and
identify GPU hardware which has not yet been broadly studied in the context of query
processing.
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Key insights. The key insight of our review is that heterogeneous CPU/GPU sys-
tems with dedicated and integrated GPUs require different strategies to distribute the
workload on CPU and GPU in order to achieve high performance.

The major limiting factor of query processing performance of heterogeneous CPU/GPU
systems with dedicated GPUs is the data transfer bottleneck between the CPU and the
GPU. To mitigate the effect of this bottleneck, query processing systems targeting ded-
icated GPUs should offload specialized coarse-grained tasks to the GPU. This strategy
largely precludes fine-grained cooperation between the CPU and the GPU because such
cooperation relies on the frequent and low-latency exchange of data.

In contrast, heterogeneous CPU/GPU system with integrated GPUs are not con-
strained by the data transfer bottleneck. Instead, the CPU and the GPU in such systems
are connected by a fast and cache-coherent on-chip fabric which enables both processors
to modify shared data structures simultaneously. Query processing systems targeting
integrated GPUs can divide the workload into fine-grained cooperative tasks and assign
each task to a processor that best matches its processing characteristics.

Basis of work. The content described in this part of the thesis was published in
ACM Computing Surveys Volume 55, Issue 1, in 2022 [266].

1.2.2. Operator variant tuning on heterogeneous processors

In the previous scenario, we examined the challenges of query processing on multiple
heterogeneous processor architectures in a comprehensive fashion. In the second scenario,
we drill down on a specific aspect of such a query processing system: its low-level operator
implementation.

Heterogeneous aspect. To achieve high performance, the operator implementa-
tion of a query processing system has to be tailored to the specific processor it runs on.
The developers of a query processing system have many degrees of freedom when design-
ing its operator implementation. For example, they have to decide how to parallelize
the workload and distribute it on multiple threads, which data structures to use, and
whether to apply low-level optimizations, such as branch-free execution.

One approach to develop a heterogeneous query processing system is to include hand-
written operator implementations for each targeted processor architecture. For example,
GDB [116] contains two completely separate operator implementations, one written in
CUDA [211] for NVIDIA GPUs, and one written in OpenMP [65] for multi-core CPUs.
This approach incurs substantial development and maintenance costs as the number of
targeted processor architectures, and programming frameworks we need to use, increases.
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The developers have to manually tune a specialized operator implementation for each
target architecture, and then they have to maintain this implementation as the query
processing system evolves.

Research goals. In this part of the thesis, we aim to mitigate the costs of support-
ing multiple operator implementations in a heterogeneous query processing system, by
letting the system automatically adapt its operator implementation to the processor it
runs on. Specifically, we focus on the following research questions.

(2.1) How sensitive are processors to changes in the operator implementations?

(2.2) How can a query processing systems learn fast operator implementations au-
tomatically, without manual tuning?

Research questions (second scenario)

Contributions and results. Our first two contributions are an extensive experi-
mental performance analysis of two common database operators, i.e., selection and hash
aggregation, on multiple processor architectures, including multi-core CPUs, GPUs, and
a Xeon Phi coprocessor. Even with these simple operations, a small number of implemen-
tation parameters yield a large search space, consisting of hundreds, or even thousands,
of possible operator implementations. We find that the best operator implementation
depends on the specific processor. Implementation heuristics derived from analyzing one
processor are not necessarily transferable to other processors, even if they are based on
similar microarchitectures by the same vendor. Furthermore, our analysis reveals that
some processors are more difficult to optimize for, because any deviation from a specific
set of implementation parameters incurs a significant performance penalty. In contrast,
on other processors, many different implementations are competitively fast.

Our third and fourth contributions are two algorithms which enable a query processing
system find fast operator implementations at runtime during query execution. The first
algorithm extends micro adaptivity [258] with a search strategy to handle a large number
of possible operator implementation candidates. The second algorithm extends a local
search to handle performance plateaus and variations in operator runtime to overcome
local optima in the search space. The key insight of our analysis of these two algorithms
is that it is necessary to exploit information about the processor and the search space
to reduce the search time for a fast variant.

Basis of work. The content described in this part of the thesis is based on two
publications presented at ADMS 2015 [268] and at DaMoN 2019 [267].
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1.2.3. Processing Java UDFs in a C++ environment

Whereas the previous two scenarios focused on the effect of hardware heterogeneity
on query processing, in this scenario, we focus on software heterogeneity. Specifically,
this scenario is motivated by an effort to extend Apache Spark [345] with the ability
to process transactions, while retaining the familiar SparkSQL [20] user interface for
analytical queries. To this end, we replace the exiting Spark execution engine with
Wildfire [26], a hybrid transactional/analytical engine.

Heterogeneous aspect. Whereas Apache Spark is written in Scala [74], a pro-
gramming language that is compiled to bytecode which runs on the Java Virtual Ma-
chine (JVM) [184], the Wildfire engine is written in C++, which is compiled to ma-
chine code that executes natively on the processor. This difference in programming lan-
guage presents a challenge when executing SparkSQL queries with user-defined functions
(UDFs) in Wildfire: How can we execute arbitrary code that is written in a JVM-based
language inside a query engine that does not run on the JVM.

The JVM specification provides a standardized mechanism, the Java Native Inter-
face (JNI) [234], to integrate with programs which are written in other programming
languages. Through the JNI, a program can instantiate an embedded JVM and execute
Java bytecode inside it. However, a JNI call is orders of magnitude slower than a simple
function call in Java or in a compiled language such as C++. This overhead is significant
if we have to use the JNI to invoke a Java-based UDF from C++ for every data tuple
processed by a SparkSQL query.

Research goals. In this part of the thesis, we aim to improve the interoperability of
UDF-based query processing systems which run on the JVM and those implemented in
other programming languages. Specifically, we focus on the following research questions.

(3.1) How can we mitigate the overhead of calling Java UDFs over JNI from C++
code for every data tuple?

(3.2) Can we bypass the JNI entirely and call Java UDFs directly from C++ code?

(3.3) How can a query processing system, which is written in a language that com-
piles to machine code such as C++, execute tuple-based Java UDFs efficiently
and transparently to the user?

Research questions (third scenario)
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Contributions and results. We develop two approaches to reduce the overhead
of calling tuple-based Java UDFs from C++. In the first approach, we transparently
generate a strided execution wrapper to transform a UDF which processes a single tuple
into a UDF which processes a batch of tuples. By amortizing the cost of a single JNI call
over multiple input tuples, this approach matches the performance of executing the Java
UDF inside the original JVM-based query processing system. In the second approach,
we compile the bytecode of the Java UDF into machine code and link it directly with a
C++ query processing engine. This approach bypasses the JNI entirely.

Comparing these two approaches shows that compiling a Java UDF into machine
code is faster if the UDF is compute-intensive and does not create many Java objects.
However, if the UDF does create many objects, including Java strings, it is faster to
transform a tuple-based UDF into a batch UDF and execute it inside an embedded
JVM.

Basis of work. The content described in this part of the thesis was published at
ACM SoCC 2017 [269].

1.3. Impact of thesis contributions

Publications of thesis contributions. The primary results of this thesis are based
on four publications, which have been presented at international conferences and work-
shops, or published in a journal.

• V. Rosenfeld, M. Heimel, C. Viebig, and V. Markl. 2015. The operator variant
selection problem on heterogeneous hardware. In Proc. of ADMS@VLDB’15, 1–
12

• V. Rosenfeld, R. Mueller, P. Tözün, and F. Özcan. 2017. Processing Java UDFs
in a C++ environment. In Proc. of ACM SoCC’17, 419–431. doi: 10.1145/3127

479.3132022

• V. Rosenfeld, S. Breß, S. Zeuch, T. Rabl, and V. Markl. 2019. Performance anal-
ysis and automatic tuning of hash aggregation on GPUs. In Proc. of DaMoN’19.
doi: 10.1145/3329785.3329922

• V. Rosenfeld, S. Breß, and V. Markl. 2022. Query processing on heterogeneous
CPU/GPU systems. ACM Comput. Surv., 55, 1. doi: 10.1145/3485126
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Open source contributions. We have released the source code and experiments
which make up our second research scenario, i.e., operator variant tuning on heteroge-
neous processors, under the Apache License 2.0.

• https://git.tu-berlin.de/viktor-rosenfeld/perseus. This repository
contains our OpenCL implementations of the selection operator, as well a C++
implementation of the variant tuning framework to learn fast operators at runtime.

• https://git.tu-berlin.de/viktor-rosenfeld/gpu-hash-aggregation-ana

lysis. This repository contains our OpenCL implementations of the hash aggre-
gation operator, as well as a Python implementation of our local search algorithm
to handle performance plateaus and runtime variation.

Additional publications. In addition, the author collaborated on the following
two publications while working on this thesis.

• T. Behrens, V. Rosenfeld, J. Traub, S. Breß, and V. Markl. 2018. Efficient SIMD
vectorization for hashing in OpenCL. in Proc. of EDBT’18, 489–492. doi: 10.54

41/002/edbt.2018.54

• C. Kotselidis, I. Komnios, O. Akrivopoulos, S. Bress, K. Doka, H. Mohammed, G.
Mylonas, V. Spitadakis, D. Strimpel, J. Fumero, F. S. Zakkak, M. Papadimitriou,
M. Xekalaki, N. Foutris, A. Stratikopoulos, N. Koziris, I. Konstantinou, I. Mytili-
nis, C. Bitsakos, C. Tsalidis, C. Tselios, N. Kanakis, C. Lutz, V. Rosenfeld, and V.
Markl. 2020. Efficient compilation and execution of JVM-based data processing
frameworks on heterogeneous co-processors. In Proc. of DATE’20, 175–179. doi:
10.23919/DATE48585.2020.9116246

1.4. Structure of the thesis

The remainder of this thesis is structured as follows.

Chapter 2. In this chapter, we focus on query processing on heterogeneous hard-
ware, specifically on systems that contain both CPUs and GPUs. We identify three key
challenges that such heterogeneous systems present, i.e., that a query processing system
has to distribute the workload on processors with different capabilities; that the imple-
mentation of the query processing system has to be adapted to both processors; and
that the query processing system has to mitigate the slow connection between the CPU
and GPU. We then conduct a survey of the academic literature to review, describe, and
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classify techniques which address these challenges. Based on our survey, we formulate
performance guidelines for query processing on heterogeneous CPU/GPU systems.

Chapter 3. Next, we focus on a specific challenge of query processing on heteroge-
neous hardware, i.e., the need to adapt the query processing code to different processors.
We show that even a few implementation parameters create a large optimization space
containing thousands of different implementation variants and that GPUs are especially
sensitive to the selection of optimal implementation parameters. To reduce the cost of
manual tuning and maintaining multiple specific implementations in a code base, we
develop two algorithms to find fast implementations at runtime.

Chapter 4. In this chapter, we focus on query processing in a heterogeneous soft-
ware environment, specifically the integration of query processing systems written in
a JVM-based language and systems written in a compiled language. We develop two
approaches, strided execution inside an embedded JVM and JIT-compilation of the Java
bytecode, to execute Java-based UDFs containing arbitrary code inside a query engine
written in C++. Our approaches mitigate or eliminate the large runtime overheads
typically associated with calling Java code from C++ for each processed tuple.

Chapter 5. We conclude this thesis by discussing open research questions for future
work.

Appendices. Additionally, in Appendix A, we discuss the scheduling decisions of
selected heterogeneous query processing systems, which we surveyed in Chapter 2. In
Appendix B, we provide comprehensive data from experiments performed in Chapter 3.
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2
Query processing on

heterogeneous CPU/GPU
systems

2.1. Problem statement

To process the vast amount of data generated by businesses and scientific communities,
data processing engines need to take advantage of heterogeneous processor architec-
tures integrated in modern computing systems [3]. Indeed, the research community
has embraced data processing on heterogeneous processors such as graphics processing
units (GPUs) [45, 116, 286], field-programmable gate arrays (FPGAs) [79, 134, 305],
and asymmetric multi-core processors (AMPs) [204].

In this chapter, we conduct a comprehensive review of the impact of heterogeneous
CPU/GPU systems on query processing, i.e., computing systems which contain both
multi-core CPUs and GPUs as processors. We focus on GPUs because they have been
one of the most successful specialized processors in the last two decades. Not only are
GPUs ubiquitous in consumer electronics, e.g., mobile phones and laptops [21, 255],
but they are also commonly used in cloud environments [15, 92, 202], super computer
installations [321], and embedded industry applications [290]. Compared to AMPs,
which are geared towards the mobile market, GPUs provide significant processing power.
Compared to FPGAs, they are much simpler to program [79].

Just as hardware is becoming increasingly diverse, so are the applications that process
data and the demands these applications place on query processing systems. Traditional
database systems process queries that are based on relational algebra [23]. Relational
queries consist of selections and projections to filter and transform data; joins to com-
bine multiple data sources; groupings and aggregations to categorize and summarize
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data; as well as set operations. Online analytical processing (OLAP) systems perform
interactive, analytical queries over large, multi-dimensional data sets to support busi-
ness decisions [135]. OLAP queries are dominated by joins and grouped aggregations.
Hybrid transactional/analytical (HTAP) systems integrate transactional and analytical
workloads in one system to support analytical queries over up-to-date data. Spatial
query systems operate on data that represents geometrical primitives, i.e., points, lines,
and polygons, as well as non-spatial, relational data [75]. Whereas the previously de-
scribed systems operate on stored data, stream processing systems [1, 51] operate on
continuously updating streams of data and order them according to a time domain [63].
Stream queries process data in terms of windows, which define the portions of the input
that are considered during query execution.

All of these query processing operations are data-intensive but they are constrained by
different bottlenecks. Stateless operations, e.g., selections, projections and ungrouped
aggregations, are bandwidth-bound. In contrast, stateful operations, e.g., joins and
grouped aggregations, are typically latency-bound. Many operations are also compute-
intensive, e.g., sorting. Spatial predicates, e.g., contains or overlaps, are especially
compute-intensive because they operate on arbitrary geometric shapes and perform many
comparisons.

GPUs provide many opportunities to speed up data-intensive, latency-critical, or
compute-intensive query processing tasks. However, the differences between CPU and
GPU architectures, and the way GPUs are integrated into a computing system, also
present significant challenges.

First, CPUs and GPUs make different performance tradeoffs. Whereas CPUs focus
on single-thread latency, GPUs are optimized for data-parallel and throughput-oriented
applications. To use each processor effectively, a heterogeneous query processing system
has to distribute the workload in a way that exploits their different capabilities and
keeps both CPUs and GPUs occupied.

Second, since CPUs and GPUs are based on different hardware architectures, we
have to adapt the implementation of query processing algorithms and operators to
each processor. However, supporting CPUs and GPUs in separate code bases increases
both development and maintenance costs. To reduce its implementation complexity, a
heterogeneous query processing system should integrate both code bases and abstract
hardware-specific differences.

And third, high-performance GPUs are dedicated devices, which are connected to
the CPU over a comparatively slow system bus. To realize any potential speedup from
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processing data on such a GPU, a heterogeneous query processing system must overcome
this bottleneck.

2.2. Contributions

In this chapter, we review and describe techniques that address the challenges of query
processing on heterogeneous CPU/GPU systems, and explore how these challenges and
techniques interact with each other. To this end, we conduct a survey of the relevant
academic literature. Based on our analysis, we identify the main trends in heteroge-
neous query processing and open research problems. Specifically, we make the following
contributions.

(1) We summarize advances in GPU hardware and their use in query processing. We
also identify GPU hardware that are not yet broadly studied in data processing
research (Section 2.4).

(2) We develop a classification scheme to categorize the distribution of query processing
tasks on heterogeneous CPU/GPU systems (Section 2.5).

(3) We review techniques for reducing the implementation complexity of heterogeneous
query processing (Section 2.6) and for mitigating the data transfer bottleneck
(Section 2.7).

(4) Based on our classification and review of these techniques, we categorize query
processing systems on heterogeneous CPU/GPU systems. We cover a diverse set of
query processing systems, including relational query processing, stream processing,
and key-value stores; as well as specific query processing tasks, e.g., join processing,
sorting, index operations, and spatio-temporal queries (Section 2.8).

The key insight of our analysis is that integrated and dedicated GPUs have to be treated
as different classes of heterogeneous query processing systems. Dedicated GPUs remain
constrained by slow data transfers and benefit from scheduling coarse-grained tasks.
In contrast, integrated GPUs benefit from scheduling fine-grained tasks on the most
suitable processor since CPUs and GPUs can cooperate efficiently.

Before we continue with the results of our survey, we describe the key engineering
tradeoffs of CPUs and GPUs and highlight important differences between these processor
architectures.
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Figure 2.1.: Performance comparison between a CPU (AMD EPYC 7702P) and a GPU
(NVIDIA Ampere A100). The GPU has 2.8× more aggregate compute
performance than the CPU and 7.6× faster memory bandwidth. However,
the CPU has 1.9× more serial performance and can access two orders of
magnitude more memory.

2.3. Processor architectures

In this section, we describe the architectures of CPUs and GPUs as well as different
strategies for integrating GPUs in a heterogeneous system. We also briefly introduce the
traditional GPU programming model and describe differences to CPU programming.

GPUs are typically characterized by high computational power and memory band-
width, especially compared to CPUs. For example, in Figure 2.1, we compare two re-
cent high performance processors, the AMD EPYC 7702P CPU [302] and the NVIDIA
Ampere A100 GPU [217]. The Ampere A100 has 2.8× more 32-bit floating point perfor-
mance and 7.6× higher memory bandwidth than the EPYC 7702P. These performance
advantages of GPUs over CPUs are often cited as a major motivation to use GPUs for
query processing in database research [46, 80, 94, 116, 119, 120, 149, 298].

Yet it is too simplistic to reduce GPUs to these performance advantages. In fact, when
we focus on other metrics, CPUs outperform GPUs. For example, as Figure 2.1 also
shows, the EPYC 7702P is 1.9× faster than the Ampere A100 when executing serial
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Table 2.1.: Comparison of processor properties of an AMD EPYC 7702P CPU and an
NVIDIA Ampere A100 GPU.

AMD EPYC 7702P NVIDIA Ampere A100
Release year 2019 2020
Transistors 38.7 billion 54.2 billion
Thermal design power 200 W 400 W
Independent cores / SMs 64 cores 108 SMs
Concurrent threads 2 / core 128 / SM
Maximum frequency 3.35 GHz 1.41 GHz
Register file size 6.4 KiB / core 256 KiB / SM
L1 data cache 32 KiB / core 192 KiB / SM
L2 cache 512 KiB / core —
Last-level cache 16x 16 MiB 40 MiB
Memory interface 8x 64-bit DDR4-3200 10x 512 bit HBM2
Memory clock 1.6 GHz 1.215 GHz

32-bit floating point code. It can also directly access two orders of magnitude more
memory.

Instead, the different performance characteristics of CPUs and GPUs indicate that
they are optimized for different usage scenarios. Both processor types are constrained by
the power wall, i.e., the requirement to keep their power consumption, and the resulting
heat dissipation, inside a manageable level [39]. To achieve high performance under
these constraints, the architectures of CPUs and GPUs are based on different design
trade-offs, which are driven by concrete application requirements. Concretely, CPUs
and GPUs differ in how they allocate transistors to implement logic, cache, and control
functionality. This specialization implies that the choice of the best processor depends
on the type of the problem. We will show in later sections how this specialization is
relevant to data processing.

In the following, we describe the design considerations that motivate the architecture
of CPUs and GPUs in more detail. In Table 2.1, we contrast a number of processor
properties of the EPYC 7702P and the Ampere A100 for reference.

2.3.1. Conventional CPUs

The primary optimization goal of conventional CPUs is their serial performance [39].
Historically, manufacturers relied on Dennard scaling [67] to increase processor frequency
and thus processing speed. Dennard scaling relates the size of transistors with their op-
erating frequency and voltage. Specifically, the power consumption of a processor is
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proportional to CV 2f , where the capacitive load C is a function of the number of tran-
sistors, V is the operating voltage, and f the processor frequency [125]. As transistors
shrink, more of them can be integrated on a die and their operating frequency increases.
To keep power consumption constant, the operating voltage has to be reduced. This
effect alone has led to a 100× performance increase of recent CPUs compared to early
CPUs [39].

Processor vendors have also implemented microarchitecture advances that extract im-
plicit instruction level parallelism (ILP) from the instruction stream, to improve serial
performance. The core technique of these advances is the processor pipeline which over-
laps the execution stages of different instructions. Ideally, the pipeline is always full
and the processor can issue and complete one instruction per cycle per functional unit.
However, the pipeline stalls when instructions are dependent on each other, or when the
processor has to wait on memory access.

Modern CPUs implement a number of techniques to keep the pipeline from stalling
and increase ILP [125]. For example, branch prediction continues to fetch and decode
instructions of the predicted branch in the instruction stream, which keeps the early
stages of the pipeline full. Speculative execution also executes the instructions of pre-
dicted branches and only discards their results, if the prediction later proves to be
incorrect. Out-of-order execution reorders the instruction stream to reduce the impact
of dependent instructions and memory stalls. Together with Dennard scaling, these mi-
croarchitecture advances have increased scalar performance by 52% per year between
1986 and 2003 [124].

The exploitation of ILP is limited by the performance of the memory system [125].
Data references stall the processor pipeline if the processor cannot find independent in-
structions to execute. The length of the stall depends on the memory latency and the
number of concurrent memory accesses that can be satisfied by the available memory
bandwidth. Unfortunately, the rate of improvement of memory performance has lagged
processor performance over time, both for latency and bandwidth [242]. Whereas early
CPUs could access memory in a single clock cycle, they now have to wait hundreds
of cycles [39]. In typical programs, especially in those that depend on integer perfor-
mance [125], there is not enough instruction level parallelism available to overcome this
access latency [332]. To reduce memory access latency, modern CPUs use a substantial
amount of their transistor budget, up to 50%, to implement large cache hierarchies [39].
These caches allow the CPU to exploit temporal and spatial data access locality. How-
ever, even with perfect caches, the performance of data-intensive applications is lim-
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ited by memory access due to compulsory cache misses when loading previously unseen
data [338].

The processes that drove performance increases in the past no longer work. On the
one hand, the increase in processor frequencies has flattened since 2003 [304]. Due to
physical limitations, manufacturers cannot further reduce operating voltages without
compromising reliability. Thus, they cannot increase the operating frequency without
excessive power consumption and heat dissipation [35]. On the other hand, the microar-
chitecture advances to increase ILP are not energy-efficient because their implementation
requires an increasing amount of the processor’s transistor budget [100]. The scalar per-
formance increase of subsequent microarchitectures is proportional to the square root of
the number of transistors [250], a phenomenon which has been called Pollack’s rule [39].
Consequently, scalar performance has slowed to 23% per year between 2003 and 2011,
to 12% per year between 2011 and 2015, and to just 3.5% per year after 2015 [124].

Since scalar performance is no longer increasing, manufacturers have turned to increase
throughput, by exploiting explicit data parallelism. For example, chip multiprocessors,
or multi-core CPUs, use their transistor budget to integrate multiple processor cores on
a single die. Simultaneous multi-threading (SMT) enables multiple independent threads
to utilize different execution units of a core which explicitly increases ILP. Vectorized
SIMD instructions work on multiple data items in a single cycle. These developments
mean that multi-core CPUs are becoming more similar to GPUs, which we discuss next.

2.3.2. Dedicated GPUs

GPUs were originally developed as special-purpose processors to accelerate graphics
rendering in 3D games. The generic computing capabilities of GPUs are an artifact of
making the graphics rendering pipeline more flexible to better support a greater variety
of 3D games [182] (see Section 2.4.3 for details). Consequently, GPUs are optimized
for throughput application of which graphics rendering is a prime example. Throughput
applications are characterized by three interrelated characteristics, which influence the
design trade-offs of GPU hardware: a high degree of data parallelism, latency tolerance,
and high demands on memory bandwidth [182].

Instead of extracting the implicit instruction level parallelism from an instruction
stream, GPUs rely on explicit data parallelism to keep processing cores busy. Conse-
quently, GPUs use their transistor budget to implement many simple processing cores
instead of implementing fewer complex processing cores, as CPUs do. For example,
while GPUs are pipelined and support super-scalar execution [225], they do not utilize
branch prediction or speculative execution. As a result, the processing performance of
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GPUs scales (almost) linearly with the transistor budget, whereas the microarchitectural
enhancements of CPUs scale only proportionally to the square root of the number of
transistors [250].

Since GPUs are optimized for aggregate throughput instead of serial performance, the
latency of processing an individual data item is less important. This latency tolerance
has two important effects on the hardware design. First, it allows us to reduce the
processing frequency and use more transistors to implement processing cores within a
given power budget. Second, instead of reducing the latency of an individual data item
through caches and microarchitectural advances, the latency is hidden by processing
other data items.

When we reduce the processing frequency, we can keep the aggregate throughput
constant by increasing the number of processing cores accordingly. Since processing
frequency and capacitive load of the processor have a linear relationship with power,
the overall power consumption is constant in this case. However, when we lower the
processing frequency, we can also lower the operating voltage of the processor which
has a quadratic relationship with power consumption. Therefore, we can increase the
number of processing cores even more while staying within the power budget of the
processor.

To support latency hiding, the GPU hardware allows for a massive oversubscription
of threads. For example, each streaming multiprocessor (SM) of an Ampere A100 GPU
can execute four independent warps at a time [217]. (A warp is a group of threads that
execute the same instruction. See Section 2.3.4 for details.) At the same time, each SM
can manage 64 different warps that await execution. At each cycle, the SM can switch
between active and inactive warps without overhead. To support these many threads,
GPUs contain very large register files which are orders of magnitude larger than the
register files of CPUs. Compared to CPUs, the GPU cache hierarchy also places more
emphasis on large L1 caches, which are close to the processing cores. In contrast, the
shared last-level cache is smaller on GPUs than on CPUs. As Table 2.1 shows, the
Ampere A100 has overall 8× fewer cache resources available per SM than the EPYC
7702P has per core. The streaming data access pattern of GPU graphics workloads
exhibits relatively little data reuse and therefore caches are less useful [182].

The memory subsystem of GPUs is optimized for high memory bandwidth, in order
to feed input data to the large number of processing cores. GPUs typically use more in-
dependent memory controllers than CPUs and therefore have a wider memory data bus.
The memory bus is also clocked faster, up to 7 GHz for GDDR6 memory [226]. High-
performance GPUs use three-dimensional stacked memory, which is packaged together
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Figure 2.2.: Memory size and bandwidth for a multi-core CPU and a dedicated GPU con-
nected over PCIe 3.0 (left) and an integrated CPU/GPU processor (right).

with the GPU processor die in a single package [224]. Stacked memory is addressed
through an ultra-wide data bus. For example, the Ampere A100 uses ten 512-bit mem-
ory controllers which results in a overall bus width of 5120 bits [217]. This is an order
of magnitude wider than the 8x 64-bit bus width of the EPYC 7702P.

2.3.3. GPU integration

Traditionally, GPUs are dedicated processors which are accessed over a system bus. We
show such an arrangement Figure 2.2 (left side). In a typical system, the CPU and the
GPU are connected by a PCI Express (PCIe) 3.0 bus [13] which offers up to 14.9 GiB/s
in theoretical bandwidth. This connection is an order of magnitude slower than the main
memory bandwidth of the CPU and two orders of magnitude slower than GPU memory.
It therefore represents a significant performance bottleneck [99, 189, 343]. Furthermore,
the separate CPU and GPU memory spaces are not coherent. Consequently, shared data
structures have to be synchronized manually which increases implementation complex-
ity [189]. Recent GPU architectures reduce this problem somewhat. For example, AMD
GPUs use PCIe atomics [13] to synchronize execution between CPUs and GPUs [7].
NVIDIA GPU support software-assisted memory coherence and system-wide atomics
through page faults and automatic page migrations but this mechanism causes runtime
overheads [275]. On IBM Power9 systems, NVIDIA GPUs can be connected to the CPU
over NVLink 2.0 [225], which supports cache coherence and atomic operations between
CPU and GPU memory in hardware and eliminates these overheads [189]. NVLink 2.0 is
also 5× faster than PCIe 3.0 which reduces the effects of data transfer bottleneck [189].

Alternatively, CPUs and GPUs can also be integrated on the same die to form an
integrated CPU/GPU processor. We show such an arrangement in Figure 2.2 (right
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Table 2.2.: Processor properties of the AMD Ryzen 7 Pro 4750G integrated CPU/GPU.

CPU GPU
Independent cores / CUs 8 cores 8 CUs
Maximum frequency 4.4 GHz 2.1 GHz
Aggregate FP32 performance 1.13 TFLOPS 2.15 TFLOPS
Serial FP32 performance 1.76 GFLOPS 1.05 GFLOPS
Last-level cache 8 MiB 1 MiB
Release year 2020
Transistors 9.8 billion
Thermal design power 65W
Memory interface 2x 64-bit DDR4-3200
Memory size & speed 64 GiB @ 47.6 GiB/s

side). In Table 2.2, we summarize the properties of the AMD Ryzen 7 Pro 4750G [21] as
an example (cf. the properties of a conventional CPU and dedicated GPU in Table 2.1).

Compared to accessing a dedicated GPU over a system bus, the integration on a single
processor die has a number of advantages. (1) CPU and GPU access main memory
directly. Consequently, the memory space for the GPU is larger than on dedicated
GPUs and there is no need to copy data [263]. (2) Memory accesses by the CPU and
GPU are coherent. Both can simultaneously access and modify shared data structures,
e.g., through system-wide atomics, which allows for more fine-grained cooperation and
simpler implementations [40]. (3) Because the CPU and GPU are more closely connected,
integrated CPU/GPU processors have a better power/performance ratio than dedicated
GPUs [295].

However, integrated CPU/GPU processors also have a number of disadvantages com-
pared to dedicated GPUs. The lower memory bandwidth leads to more memory stalls [121]
and reduces the performance of memory-bound kernels [295]. Most importantly, the
CPU and GPU have to share common resources and compete for main memory access.
The high bandwidth required by the GPU can easily saturate the shared memory sub-
system and increase the memory access latency of the CPU [150]. Furthermore, the
entire processor is constrained by a common power envelope, and, therefore, integrated
CPU/GPU processors have less raw performance than combining a dedicated GPU with
a conventional CPU in a system.

In Table 2.3, we summarize advantages and disadvantages of integrating GPUs over
a system bus or on the same processor die.
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Table 2.3.: Comparison of advantages (in italics) and disadvantages of accessing GPUs
over a system bus or integrating them on the same processor die.

System bus Processor die
Data transfer bandwidth Slow No transfer
GPU memory capacity Small Medium
GPU memory bandwidth High Medium
Raw performance High Medium
Power/performance ratio Worse Better
Data synchronization Manual Automatic

2.3.4. GPU programming model

GPUs are programmed in a specialized programming model that allows programmers
to formulate a parallel program in a scalable way [211]. The programming model repre-
sents GPU hardware as an abstract parallel processor. It defines how a parallel program
is executed on the processor and how the workload is partitioned to achieve scalable
parallelism. As a result, GPU programming differs from CPU programming in a num-
ber of important ways. Two popular implementations of this programming model are
CUDA [211, 216] and OpenCL [300, 318]. In the following, we primarily use OpenCL
terminology to describe the programming model but also state equivalent CUDA terms.

2.3.4.1. Abstract parallel programming model

OpenCL represents parallel processors, e.g., multi-core CPUs or GPUs, as computational
devices consisting of compute units (CUs). Often, but not always, these compute units
map to actual hardware entities. For example, on NVIDIA GPUs, each compute unit
maps to a streaming multiprocessor. On simultaneously multithreaded CPUs, a compute
unit represents a logical CPU core.

An OpenCL program is divided into host code and device code. The host code executes
in a single thread on the host CPU. It is responsible for coordinating operations on
the device, e.g., initiating the execution of device code and transferring data between
separate memory spaces. The device code executes in parallel on the OpenCL device.
It consists of kernels which are scalar functions, expressing the operations on a single
datum of a data-parallel task. Conceptually, a kernel contains the operations of a single
iteration of a parallelized loop.

When launching a kernel, the programmer specifies a hierarchy of independent kernel
instances that execute on the device. Each kernel instance is called a work item (or a

25



thread in CUDA). Individual work items are arranged into work groups (called thread
block in CUDA). All work items of a kernel invocation make up the nd-range of the kernel
(called grid in CUDA). The work items of a single work group can cooperate with each
other through special instructions, fast barrier synchronizations, and a very fast shared
memory space called local memory. The last two hardware features enable the work
items of a work group to process a datum, store the result in a shared cache, and wait
until the other work items have finished their computations before accessing their results.
In contrast, work items from different work groups execute completely independently.
To force a synchronization between all work items, the kernel must terminate and the
programmer must launch a new kernel with a new nd-range of work items.

2.3.4.2. Scalable parallelism

It is through this two-tiered hierarchy of work items and work groups that the OpenCL
and CUDA programming models support scalable parallelism [211]. Using the program-
ming model, a programmer must partition a problem into two levels. The first level, i.e.,
the individual work groups, work on coarse-grained subproblems which can be solved
independently in parallel. Each work group executes on a dedicated compute unit. Mul-
tiple work groups can execute on different compute units in parallel or on the same
compute unit sequentially. The second level, i.e., the work items within a single work
group, work on fine-grained subproblems which can be solved cooperatively in parallel.

The GPU hardware supports this fine-grained thread and data parallelism through fast
barrier synchronization, access to shared local memory, lightweight thread creation, and
zero-overhead scheduling. Additionally, independent nd-ranges can execute concurrently
given sufficient hardware resources. This concurrent execution allows for coarse-grained
task parallelism.

2.3.4.3. Differences to CPU programming

A major difference between programming on GPUs and CPUs are the number of running
threads, and how these threads work together. In general, on CPUs, comparatively few
threads operate independently on coarse-grained subproblems. Specifically, on multi-
core CPUs, each CPU core typically executes a single hardware thread that consumes
an independent partition of the data [175]. Although threads running on different CPU
cores can communicate with each other, they must avoid performance pitfalls caused by
accessing shared or nearby data, e.g., false sharing. In contrast, GPUs execute many
thousands of hardware threads to hide the latency of individual operations. Moreover,
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the threads that correspond to work items of the same work group have to cooperate with
each other to achieve peak performance. To this end, these work items can access a fast
local memory to exchange data and synchronize through fast barrier synchronizations.
A classic example of a data processing task that showcases this cooperation to achieve
high throughput is parallel reduction on GPUs [187].

A second important difference between GPU and CPU programming is the Single
Instruction, Multiple Thread (SIMT) [182] execution model. In the SIMT execution
model, a number of work items share the instruction pointer and execute a common
instruction. For example, on NVIDIA GPUs, 32 threads make up a warp and execute
the same instruction at the same time. Similarly, on AMD GPUs, 64 work items make
up a wavefront. The SIMT execution model is similar to the Single Instruction, Multiple
Data (SIMD) execution model supported by CPU vector instructions. However, a crucial
difference is that GPU kernels are written as scalar functions, independent of the SIMD
instruction width of the processor. The GPU hardware also takes care of masking results
when different work items follow separate branches in the kernel code.

Nevertheless, to maximize performance, programmers still have to take hardware de-
tails, such as the warp size, into account. For example, programmers should avoid
diverging code paths for the threads inside a warp [89, 119]; utilize warp-level primi-
tives [181], e.g., warp-level reductions [217] or ballot and shuffle instructions [89, 177,
289]; and let the threads of a warp access adjacent global memory locations, so that the
GPU can coalesce these accesses into as few memory transactions as possible [19, 213].

2.4. Evolution of query processing on GPUs

In this section, we describe how query processing on GPUs developed over time. Fig-
ure 2.3 shows a timeline of important technological advances and how they influenced
data processing research. In the following, we discuss these relationships in more detail.

2.4.1. Fixed-function graphics pipelines

Modern programmable GPUs have evolved incrementally from fixed-function graphics
pipelines [182]. These fixed-function pipelines split the image rendering process into dif-
ferent hardware-accelerated stages. For example, a vertex processor projects the vertices
of a three-dimensional scene onto the two-dimensional screen space. The transformed
vertices are assembled into primitives such as triangles and rasterized into pixel frag-
ments. A fragment processor then determines the color of each pixel fragment based on
textures and screen content samples.
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Figure 2.3.: Timeline of GPU technology advances (left) and their influence on query
processing research (right).
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Even though early GPUs were not programmable, they offered enough functionality
and computational power to accelerate spatial selections and joins [303]. Notably, a
proof-of-concept implementation was integrated with Oracle 9, as an early example of
heterogeneous execution on CPUs and GPUs [25].

2.4.2. Programmable graphics pipelines

To improve the image rendering capabilities of their GPUs, ATI and NVIDIA introduced
programmable vertex and fragment processors [76, 183]. While limited at first, these
processors soon supported large programs and dynamic control flow [348]. At the same
time, high-level programming languages, such as C for graphics (Cg) [196], were devel-
oped with the explicit purpose to support general purpose computing on GPUs. How-
ever, algorithms still had to be expressed in terms of the image rendering process [112].
For example, data was stored in textures, i.e., two-dimensional arrays containing four-
component pixel color vectors. To trigger any computation, a quadrilateral had to be
rendered. Furthermore, programmable fragment processors lacked integer arithmetic
and could not perform scatters, i.e., writes to random memory locations [95].

Govindaraju et al. repurposed specific hardware features of the fragment processor
to perform general data processing tasks. For example, multi-attribute predicate eval-
uations were implemented with the depth and stencil tests, which are used to quickly
discard pixel fragments [95]; comparator mapping and value comparisons in sorting
networks were built on texture mapping and color blending hardware [94, 96]; and un-
grouped aggregations were implemented with occlusion queries [95]. With these primi-
tives, Govindaraju et al. implemented single table relational query processing [95], quan-
tile and frequency estimation on data streams [96], and external sorting [94] on GPUs.

2.4.3. General purpose parallel processing

The utilization of the vertex and fragment processor depends on the specific graphics
processing task [182]. Tasks which do not strike the correct balance leave processing
resources idle. To counter this inefficiency, ATI developed a unified vertex and fragment
processor for the XBox 360 [17]. Subsequently, NVIDIA introduced the Tesla architec-
ture as a unified general purpose parallel processor [182]. The Tesla architecture was
the first to support CUDA (Compute Unified Device Architecture) [211, 216], which is
a parallel programming model to formulate computation tasks without expressing them
in terms of the image rendering process. CUDA exposes hardware features that are not
accessible in graphics-based programming APIs and provides a significant performance
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boost [113]. For example, individual threads can cooperate and have access to fast,
on-chip memory.

With the availability of CUDA, a number of GPU-optimized, parallel data processing
primitives were devised, e.g., scan [113, 281]; gather and scatter [115]; map, split, and
sort [118]; and reduce and filter [116]. Based on these primitives, He et al. implemented
access methods and relational operators in GDB, a fully-functional relational query
processor on the GPU [116]. GDB also included a CPU implementation and supported
relational query processing on heterogeneous CPU/GPU systems.

2.4.4. Fast atomic operations

The very first general purpose GPUs did not support atomic read/modify/write op-
erations [219]. This limitation precluded data-parallel operator implementations that
rely on locks, e.g., single-pass selections or joins. Consequently, these operations were
implemented using lock-free algorithms that relied on multiple passes to decouple the
computation of write positions and writing results [113, 116, 118, 343] These algorithms
read their inputs and evaluate the selection predicate or join condition multiple times,
i.e., they are neither memory nor work-efficient.

On the first GPUs that supported them, atomic operations on the same address were
slow and presented a significant bottleneck [227]. However, hardware support for atomic
operations has been regularly improved in subsequent generations [217, 221, 224, 227,
228]. Nowadays, they are orders of magnitude faster. Atomics enable memory- and
work-efficient single-pass algorithms [87, 120, 142] as well as lock-based concurrency
control [119]. System-wide atomics [40, 225] also allow CPUs and GPUs to access
shared data structures simultaneously, which enables fine-grained cooperation between
both processors [120, 189].

2.4.5. Parallel processing for heterogeneous systems

CUDA [211, 216] is a proprietary framework that only supports NVIDIA GPUs. In con-
trast, OpenCL [300, 318] is a parallel programming standard that supports GPUs from
multiple vendors and also other parallel processors, e.g., multi-core CPUs or FPGAs.
OpenCL offers functional portability, i.e., the same code can run on any OpenCL-capable
processor.

Functional portability and wide-ranging hardware support reduce the implementation
complexity of heterogeneous query processing systems. For example, hardware-oblivious
databases, e.g., Ocelot [123], contain a single operator implementation in OpenCL that
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runs on CPUs and GPUs. OpenCL is also a popular compilation target for heteroge-
neous query processing systems that employ query compilation, e.g., Voodoo [248] and
Hawk [46].

As we describe in Section 2.3.4, the programming models of CUDA and OpenCL
treat GPUs as coprocessors, which are controlled by a host CPU. In contrast, the Het-
erogeneous System Architecture (HSA) [264] treats CPUs and GPUs types as first class
processors. HSA is a programming platform for heterogeneous systems with a shared
coherent memory space, e.g., integrated GPUs. It is particularly suited to implement
fine-grained cooperation on these processors [205].

CUDA, OpenCL, and HSA are low-level programming environments for heterogeneous
CPU/GPU systems. Alternatively, developers can program heterogeneous systems in a
high-level language, which uses LLVM [174] during compilation. LLVM is a compiler
framework built around a machine-independent intermediate representation which can
be lowered to machine code for various CPU and GPU architectures [185]. Indeed, AMD
and NVIDIA use LLVM internally in their GPU compiler infrastructure [8, 215].

2.4.6. Integrated GPUs

Traditionally, GPUs are dedicated devices, which are connected to the system over a
system bus. Over time, transistor size scaling has enabled vendors to integrate CPUs,
GPUs, and other components on a single processor die [41, 176]. We discuss the archi-
tectural differences between dedicated and integrated GPUs in detail in Section 2.3.3.

2.4.7. Inter-kernel communication

To improve utilization, GPUs can execute multiple kernels at the same time [227]. How-
ever, the traditional GPU programming model described in Section 2.3.4 assumes that
GPU kernels run in isolation and do not communicate with each other. Recent pro-
gramming frameworks lift this limitation and allow for inter-kernel communication. For
example, OpenCL 2.0 [155] supports pipes to exchange data between kernels running on
the same processor. HSA supports signals to synchronize the execution of concurrent
kernels on different processors [205]. Both OpenCL pipes and HSA signals have been
used to implement in-cache pipelined query processing on GPUs [164, 244], similarly to
vectorization on CPUs [38].
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2.4.8. Fast coherent interconnects

Dedicated GPUs are typically connected over a comparatively slow system bus, e.g., PCIe
3.0. This connection represents a major bottleneck in heterogeneous query processing
systems. Although faster interconnects between CPUs and GPUs exist, e.g., NVLink
2.0 [225], they are only supported by a few vendors or not yet commercially available.
We discuss the data transfer bottleneck and the effect of faster interconnects on it in
detail in Section 2.7.3.

2.4.9. Hardware accelerated matrix computations

Recent GPUs [30, 217, 225] contain specialized processing cores to accelerate matrix
computations which form the basic building blocks of machine learning workloads. These
specialized cores provide similar capabilities as dedicated processors specialized for deep
learning applications, e.g., Google’s Tensor Processing Unit (TPU) [138].

Early research shows that TPUs can accelerate relational operators, however, their im-
plementation on programming frameworks for TPUs is cumbersome and inefficient [129].
In this way, relational query processing on these cores is similar to GPU programming
prior to general purpose programming frameworks such as CUDA and OpenCL.

However, these specialized processing cores make GPUs an interesting hardware plat-
form to investigate how to integrate machine learning tasks with traditional query pro-
cessing pipelines and how to leverage machine learning for query optimization [3].

2.4.10. Combination of general purpose processing and graphics
rendering capabilities

After the introduction of CUDA, most query processing research focused on the general
purpose parallel processing capabilities of GPUs. Nevertheless, the GPU graphics ren-
dering pipeline can still be used to speed up query processing tasks, e.g., spatial join
queries [344]. These queries rely on computationally expensive point-in-polygon tests
for which the GPU rasterization hardware is optimized. In modern graphics rendering
languages, e.g., OpenGL [153], users can also combine graphics rendering functionality
with general purpose computation for query processing tasks [344].

2.4.11. Summary

As this overview shows, the research community has embraced GPUs for query process-
ing. New hardware features are typically exploited within two to four years in research

32



prototypes and heterogeneous execution has been a focus from the start. However, so
far we are not aware of research that utilizes specialized processing cores for matrix
computations to combine query processing with machine learning.

2.5. Scheduling

A core task of query processing on a heterogeneous CPU/GPU system is to decide how
to schedule a workload on multiple compute units with different capabilities. In this
section, we present a scheme to classify these scheduling decisions. We start by formu-
lating a number of requirements that the scheduling process should take into account.
Afterwards, we give a brief overview of the dimensions of our classification scheme and
then present each dimension in detail.

2.5.1. Scheduling policy requirements

Based on our review of different query processing systems, we have synthesized the
following four requirements when scheduling a workload on a heterogeneous CPU/GPU
system.

(1) The scheduling policy should account for the architectural differences between CPUs
and GPUs. Since CPUs and GPUs are designed for different application requirements,
it follows that one or the other may be more suitable to run a specific data processing
task. A scheduling policy should exploit the strength of each processor and avoid its
weaknesses and limitations.

(2) The scheduling policy should account for workload characteristics. The suitability
of a processor may depend on data characteristics, e.g., the input size [201], or query
characteristics, e.g., the mixture between search and update queries [355].

(3) The scheduling policy should account for the integration of the CPU and the GPU.
On heterogeneous systems with a dedicated GPU, data transfers should be minimized
because of their large overhead. In contrast, on systems with a cache-coherent integrated
CPU/GPU, tasks on CPU and GPU compute units can cooperate closely without syn-
chronizing via system main memory [40].

(4) CPU and GPU utilization should be balanced. When utilization is unbalanced, the
resources of the idle processor are wasted [355]. However, a query processing system
can maximize its overall throughput if idle processors can work on other independent
tasks [201, 247].
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Figure 2.4.: Scheduling dimensions.

2.5.2. Classification overview

In their survey on heterogeneous computing techniques, Mittal and Vetter propose two
dimensions to categorize these scheduling decisions [203]. The first dimension categorizes
the scheduling time, i.e., when a scheduling decision is made. A program may decide
the schedule statically (before program execution), dynamically (during execution), or
employ a hybrid schedule (interleaving static and dynamic schedules for different tasks).
The second dimension categorizes the scheduling strategy, i.e., the underlying determi-
nants for the scheduling decision. In our review of different query processing systems,
we have found the nature of the task, cost models, data locality, and load balancing as
determinants for scheduling decisions.
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Table 2.4.: Publications describing or implementing different processor usage strategies.

Usage Publications

Specialized Approximate & Refine [247], Statistical coprocessor [122], Mega-KV [356],
Caldera [19], Raza et al. [261], GSS [33], HELLS join [148], STIG [70], HB+-tree [283],
Stehle et al. [298], G-Grid [177], GAT [351], Sioulas et al. [289]

Generic GDB [116], CoGaDB [42], SABER [163], DB2 BLU [201], HERO [145],
HetExchange [54], FineStream [352], Beier et al. [28], He et al. [120], Bøgh et al. [34]

Hybrid He et al. [121], DIDO [355], SCCG [333], Gubner et al. [106], Lutz et al. [189]

In the context of query processing, we propose four additional dimensions. The third
dimension categorizes the processor usage, i.e., whether they are used as specialized
resources for specific tasks, as generic compute resources, or as hybrid resources, i.e., as a
mixture of the two approaches. The remaining dimensions are the workload distribution,
the task granularity, and the data partitioning scheme. The first three dimensions classify
how a scheduling decision is made. The last three dimensions further classify the types
of tasks that are scheduled. We give an overview of these six dimensions in Figure 2.4.

2.5.2.1. Task types

For the purpose of our classification, we define a task as a unit of work for which a query
processing system decides whether to execute it on a CPU or on a GPU. Such a task
can be very simple, e.g., the computation of a hash value as part of a hash join, or very
complex, e.g., the execution of a complete OLTP query inside an HTAP query engine.
A task can also work on just a subset of the data. In this case, multiple similar tasks
are parallelized across the CPU and the GPU.

We intentionally adopt this broad definition to capture the very different scheduling
choices of the query processing systems which we evaluated in this survey.

2.5.3. Processor usage

We discuss this dimension first because it greatly influences the scheduling time and
strategy.

Since CPUs and GPUs have different capabilities, a query processing system may
use them as specialized processors for specific tasks. We call these specialized systems.
Alternatively, a query processing system may use CPUs and GPUs as generic compute
resources. We call these generic systems.

In a specialized system, a developer analyzes the query processing system, identifies
the processing requirements of individual tasks, and determines a fixed assignment of
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Table 2.5.: Publications describing or implementing different scheduling time strategies.

Time Publications

Static GDB [116], Approximate & Refine [247], CoGaDB [42], He et al. [121], Statistical
coprocessor [122], Mega-KV [356], Caldera [19], Raza et al. [261], GSS [33], He
et al. [120], HELLS join [148], STIG [70], HB+-tree [283], Stehle et al. [298],
G-Grid [177], GAT [351], Sioulas et al. [289]

Dynamic Breß et al. [44], SABER [163], DB2 BLU [201], HERO [145], FineStream [352],
SCCG [333], Beier et al. [28], Bøgh et al. [34]

Hybrid DIDO [355], HetExchange [54], Gubner et al. [106], Lutz et al. [189]

each task to the most suitable processor. In other words, specialized systems use a static
schedule based on the nature of the task. A major advantage of this approach is that
the implementation can fully exploit the specific capabilities of each processor, as well as
the specific integration of the CPU and the GPU. However, a static schedule can leave
a processor underutilized or fail to adapt to specific workloads [355].

In a generic system, the processors are not distinguished by their capabilities but
by their relative throughput. Typically, throughput is explicitly quantified using cost
models. However, a system may also implicitly balance the workload on each processor
through work stealing or morsel-driven parallelism [175]. An advantage of this approach
is that systems can balance processor utilization and adapt to workload changes in a
flexible manner [163, 333, 355]. Note that such a system may still exploit the spe-
cific capabilities of CPUs and GPUs by providing specialized implementations for each
processor type [116, 145].

A query processing systems may also use processors as hybrid resources. Such a system
assigns some tasks to a specific processor based on their nature, while other tasks can
execute on any processor.

We classify existing work according the processor usage in Table 2.4.

2.5.4. Scheduling time

The scheduling time determines when a system assigns a task to a specific processor. A
schedule may be static, i.e., fixed before program execution, or dynamic, i.e., adaptively
set while the program executes. The processor usage partially determines the scheduling
time. In specialized systems, the schedule is always statically determined by the design
of the implementation. In contrast, in generic systems, the schedule may be static or
dynamic. A system may also implement a hybrid schedule, i.e., statically assign CPU
and GPU resources to execute parts of a query during query optimization, but then
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Table 2.6.: Publications describing or implementing different scheduling strategies.

Strategy Publications

Nature of task Approximate & Refine [247], Statistical coprocessor [122], He et al. [121],
Mega-KV [356], DB2 BLU [201], Caldera [19], DIDO [355], Raza et al. [261],
SCCG [333], GSS [33], HELLS join [148], STIG [70], HB+-tree [283], Stehle
et al. [298], G-Grid [177], GAT [351], Sioulas et al. [289], Gubner et al. [106], Lutz
et al. [189]

Cost models GDB [116], Breß et al. [43], Karnagel et al. [147], CoGaDB [42], He et al. [121],
SABER [163], DIDO [355], HERO [145], FineStream [352], Beier et al. [28], He
et al. [120], HB+-tree [283]

Data locality Breß et al. [44], HERO [145], HetExchange [54]

Load balancing SABER [163], DB2 BLU [201], DIDO [355], HetExchange [54], SCCG [333], Bøgh
et al. [34], Gubner et al. [106], Lutz et al. [189]

modify these decisions dynamically during query execution, e.g., based on data locality
and processor load. The reasons for these static and dynamic scheduling decisions are
based on the scheduling strategy which we discuss next.

We classify existing work according the scheduling time in Table 2.5.

2.5.5. Scheduling strategy

The scheduling strategy determines which reasons a query processing system considers
when it assigns a task to a specific processor. Again, the processor usage partially
determines the scheduling strategy. Specialized systems decide the schedule based on
the nature of tasks. Generic systems also consider the task nature in their scheduling
decisions. In addition, generic systems take other metrics into account, i.e., the expected
costs of a task based on a cost model, the data locality, and the processor load.

We classify existing work according the scheduling strategy in Table 2.6.

2.5.5.1. Nature of tasks

This scheduling strategy aims to account for architectural differences between CPUs and
GPUs, as well as for workload characteristics, by applying task or data-based heuristics to
assign tasks to the most suitable processor. In the following, we summarize guidelines for
tasks that should run on the CPU and GPU. Note that these guidelines are not absolute.
Other considerations, e.g., the data locality and current processor load, which we discuss
in sections 2.5.5.3 and 2.5.5.4, may cause a query processing system to schedule a task
on a less suitable processor.
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Guidelines for CPU tasks. The CPU is especially suited to process:

(1) Branch-heavy tasks, e.g., tree traversals [70, 351] or finding shortest paths in
graphs [177]. The hardware support for branch prediction and speculative execution on
CPUs can extract implicit instruction parallelism from such an execution stream [125]. In
contrast, on GPUs these tasks may cause control flow divergence and increase execution
time [213]. However, the effect of control flow divergence due to variable-sized data
or skewed data can be mitigated by rebalancing the workload across the threads of a
warp [89].

(2) Small data batches, e.g., sorting or aggregating a small number of tuples [201]
or low-frequency updates in key-value store workloads [355]. These either do not pro-
vide enough data parallelism to fully utilize GPU resources or the speedup that can be
attained by processing these on the GPU does not overcome the overhead of the data
transfer.

(3) Operations with small state, e.g., aggregating over a small number of groups [201].
If the state fits into CPU caches, the CPU does not have to wait for slow random main
memory accesses. It can therefore process data at a much faster rate than sending it
over the system bus.

(4) Preprocessing or postprocessing very large data sets, e.g., an initial partitioning
step of a hash join [289] or a final merge of sorted runs [298]. These steps reduce the
size of the working sets that have to be processed on the GPU at a time, and overcome
the constraints of limited GPU memory.

(5) Transactional queries in HTAP systems. The latency-critical nature of these
queries matches the task-parallel nature of CPUs [19, 261]. Furthermore, accessing
small values of random individual tuples over PCIe reduces the effective PCIe bandwidth
and exacerbates the data transfer bottleneck [207]. GPUTx [119] proposes to process
transactions on GPUs in bulk to achieve high throughput at the cost of increased latency.
However, it is limited to GPU-resident data, so it does not suffer from slow random data
access over PCIe.

(6) System calls, e.g., for network processing and memory allocation [355, 356] or
for reading data from storage [149]. The traditional GPU programming model (see
Section 2.3.4) is designed to offload computations and does not provide access to system
calls. NVIDIA GPUs can read directly from other PCIe devices, including from network
and storage, using GPUDirect [222]. However, this is not a generic interface and the
host CPU must still initiate communication. GENESYS [330] is a proof-of-concept of a
generic GPU system call implementation for Linux kernels.
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Guidelines for GPU tasks. The GPU is especially suited to process:
(1) Compute-intensive operations, e.g., relational queries with many aggregation func-

tions [201], spatial queries containing point-in-polygon tests [70, 333, 351], or skyline
queries containing dominance tests [33]. These queries can be effectively parallelized
and benefit from the high aggregate computing power of the GPU.

(2) Random access to large working sets, e.g., batched lookups of individual keys in
hash tables [355, 356] or B+-tree indexes [283]. These tasks benefit from the latency
hiding capabilities and the high memory bandwidth of GPUs. In contrast, CPUs incur
costly memory stalls if the data does not fit into CPU caches.

(3) Operations with large state, e.g., hash joins [142, 189, 289], hash aggregations [149,
201], or Bloom filters [106] with many keys. Because of its superior random access
performance, the GPU can efficiently process much larger state than the CPU. The
GPU can improve throughput even further by partitioning the input internally so that
the state of each partition can be processed in fast local memory [289].

(4) Analytical queries in HTAP systems. The data-intensive nature of these queries
matches the data-parallel nature of GPUs [19, 261]. Furthermore, these queries often
process large contiguous blocks data of data, e.g., entire columns, which utilizes PCIe
bandwidth efficiently [207], and multiple queries can share the transferred data [261].

2.5.5.2. Cost models

This scheduling strategy aims to account for architectural differences between CPUs
and GPUs, as well as for workload characteristics, in a more quantitative way than the
previously described heuristics. Given a cost model that estimates the throughput of in-
dividual tasks on each processor, as well as any data transfer costs, we can schedule tasks
and partition data in a way that maximizes the overall throughput of a query processing
system. Some costs models also factor in additional overheads, e.g., a processor-specific
execution latency [147] or transfer initialization costs [116].

Estimating throughput. The throughput of a task can be estimated in two ways.
Black-box cost models treat tasks as opaque operations and learn their processor-specific
throughput based on historical data. They can be applied without detailed knowledge
of the hardware or the implementation of the task.

In contrast, white-box cost models estimate throughput analytically. They break down
a task into individual components and analyze its memory access pattern. From this
analysis they estimate the execution time and the memory access time. The individual
components can be data processing primitives, e.g., map or reduce, which are evaluated
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Table 2.7.: Publications describing or implementing cost models.

Cost model Publications

Black box Breß et al. [43], CoGaDB [42], SABER [163], FineStream [352], Karnagel et al. [147],
HERO [145], Beier et al. [28], HB+-tree [283]

White box GDB [116], DIDO [355], He et al. [120], He et al. [121]

with micro benchmarks [116]. Alternatively, a cost model may count individual instruc-
tions and combine them with the theoretical peak instructions per cycle throughput of a
processor [120, 121, 355]. The memory access time of tasks that run on the CPU can be
estimated using well-known cost models [191]. However, due to architectural differences,
we cannot apply these directly to tasks executed on the GPU. Instead, GPU cost models
have to account for the difference between coalesced and non-coalesced device memory
access [116]. For integrated CPU/GPU systems, there are a number of cost models that
treat both processor types in a unified way [120, 121, 355] and also account for the
interference when both processors execute tasks [355].

In Table 2.7, we list publications for different cost model types.

2.5.5.3. Data locality

This scheduling strategy aims to minimize the impact of the data transfer bottleneck on
systems with dedicated GPUs. Query processing systems which employ cost models as
a scheduling strategy implicitly take data locality into account as they will not assign a
task to a processor if the data transfer results in an overall slower execution [116, 147].
However, cost models are not necessary to exploit data locality, as it suffices to track
the location of data during the execution of a query. For example, HetExchange [54]
assigns a specific GPU or a specific CPU core to each instance of its query pipelines. By
tracking this information, HetExchange can process data blocks based on their locality
even if the pipeline crosses device boundaries multiple times.

Early decisions during the execution of a query can limit the choices in subsequent
stages because they determine the location of intermediate results [145]. To increase its
choices, a query processing system can cache intermediate results even if it moves them
to another processor [145]. Breß et al. [44] implement a scheduling policy in CoGaDB [42]
that relies solely on data locality for its scheduling decisions. They cache frequently-
accessed columns on the GPU and schedule tasks to run on the GPU only if all their
inputs are present in GPU memory.
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2.5.5.4. Load balancing

This scheduling strategy aims to maximize the utilization of all computing resources in
a heterogeneous CPU/GPU system. Specialized query processing systems implement
a fixed task assignment to each processor. In this case, the processor load can vary
a lot because it depends on the relative computing power of the CPU and GPU. In
contrast, generic query processing systems can balance the load of these processors by
freely assigning or migrating tasks to them.

The systems in this survey employ the following four load balancing approaches.

(1) Use a cost model to estimate and track the execution time of individual tasks.
Normally, such a system would assign a task to the processor which can execute it in
the shortest amount of time. By keeping track of the estimated execution times of the
tasks that are currently scheduled in the system, it can determine if a slower processor
would be able to finish this task earlier. This approach is taken, e.g., by CoGaDB [42]
and SABER [163].

(2) Use a cost model to partition the data according to the relative throughput of each
processor. Such a system does not have to track the execution time of the tasks running
in the system because it aims to balance each operation on all processors. This approach
is taken, e.g., by GDB [116], the HB+-tree [283], and He et al. [120, 121],

(3) Partition the data into discrete batches and opportunistically assign a task to an
idle processor. This approach is similar to morsel-driven parallelism [175]. For example,
HetExchange [54] partitions the input data of individual relational queries and Lutz
et al. [189] split the input data of individual hash joins. Note that for this use case,
dedicated GPUs require larger batches for efficient execution than CPUs to overcome
data transfer overheads [106, 189].

(4) Partition the data into discrete batches and perform work stealing. Such a system
assigns a task to a particular processor according to its nature, but as long as the
task is not started, another processor can work on it. This approach is taken, e.g., by
DIDO [355] and Wang et al. [333].

Combining load balancing with other scheduling strategies. Load balancing
is often employed together with other strategies to combine static and dynamic schedul-
ing. For example, HetExchange [54] statically assigns CPU and GPU resources to the
execution of a query during query optimization but then routes data blocks dynamically
to different processors during query execution. DIDO [355] employs a cost model to
assign operators of its fixed processing pipeline to CPU or GPU compute units. How-
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ever, since each query is independent of the others, an idle compute unit can steal the
execution of a query batch.

Load balancing can also be employed to reduce load imbalances that arise from using
CPUs and GPUs as specialized processors based on the nature of a task. For example,
Wang et al. [333] normally schedule a compute-intensive spatial query on the GPU
and a parsing task on the CPU. However, either processor can pick up a task from
the other processor if it has free resources. Finally, Appuswamy et al. [19] propose to
process analytical queries on the GPU by default, but also involve the CPU if it has free
resources.

Avoiding task interference. Related to the goal of maximizing processor uti-
lization is the need to avoid task interference. Workloads on the CPU and GPU can
interfere with each other because they share common resources. On integrated GPUs,
the bandwidth requirements of the large number of GPU threads tend to monopolize the
on-chip network, the last-level cache, and the memory controllers [150]. This monopo-
lization increases the latency of CPU threads and therefore decreases their performance.
DIDO [355] attempts to model the effect of this interference explicitly in its cost model
to determine the expected runtime of a task.

Dedicated GPUs can avoid this interference if they work on GPU-resident data be-
cause of their separate memory space. However, workloads on dedicated GPUs can also
interfere with CPU workloads when both processors access data in main memory [19,
106, 261, 289]. Sioulas et al. [289] observe this effect in a multi-socket system during
an initial partitioning of the data on the CPU, to reduce the working set size of a hash
join on the GPU. The cache coherency traffic between two CPU sockets caused by this
partitioning interferes with the concurrent data transfer to the GPU. Since the over-
all performance is bounded by the data transfer over PCIe, they reduce the number of
partitioning threads on the CPU to limit this interference.

Caldera [19] and Raza et al. [261] propose a design of an HTAP system which executes
OLTP queries on the CPU and OLAP queries on the GPU, in order to reduce the
house pattern [252], i.e., the reduction of OLTP throughput as the number of OLAP
clients increases. However, since both workloads still require access to main memory,
this separation reduces interference only to a certain extent. Caldera organizes data
in a unified storage system and employs copy-on-write snapshots when OLTP queries
update data. These updates compete with data transfers to the GPU, which increases
the execution time of OLAP queries and can cause the throughput of OLTP queries to
collapse. This is effect is especially strong if the hot set of the OLTP queries contains
most of the data and if there are few OLAP queries per snapshot to maximize data
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freshness. To overcome this interference, Raza et al. [261] separate the storage of both
workloads and periodically merge OLTP updates into the data used for OLAP queries.

2.5.6. Workload distribution

The strategy to divide a workload into smaller units depends on the processor usage of
the query processing system.

2.5.6.1. Using CPUs and GPUs as specialized processors

As we described in Section 2.5.3, in specialized query processing systems, the assignment
of individual tasks to a processor depends on the specific algorithm design chosen by
a developer. This approach allows developers to tailor the implementation to each
processor and to work around weaknesses, e.g., excessive data transfer to dedicated
GPUs. For example, Stehle et al. [298] employ the GPU to sort large runs, which fit
into GPU memory, but then merge the sorted runs on the CPU, which can access them
sequentially. Using this division of labor, data is only transferred a single time to and
from the GPU.

A common design pattern that we encountered in our survey is to generate result
candidates on one processor and verify them on the other processor to produce final
results. This approach is taken, e.g., by Li et al. [177] and by Zhang et al. [351], to
process compute-intensive spatial queries. Note that Li et al. [177] perform the candidate
generation on the GPU, whereas Zhang et al. [351] perform the result verification on
GPU. In other words, these systems make different decisions which of the two tasks,
candidate generation or result verification, is executed on the GPU, depending on which
task is more compute-intensive and easier to parallelize.

A related approach is to reformulate a data processing problem so that it conforms to
the candidate generation and results verification pattern. This approach is taken, e.g.,
by the Approximate and Refine processing model for relational queries [247] and by the
key-value store Mega-KV [356]. These systems first compute an approximate answer
based on lossily compressed data on the GPU and then refine the approximate answer
on the CPU. In both cases, their goal is to maximize the utility of GPU-resident data,
in order to process data that is much larger than GPU memory while avoiding costly
data transfers between the CPU and the GPU.
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Table 2.8.: Publications describing or implementing different workload distributions in
generic systems.

Workload distribution Publications

Operator placement CoGaDB [42], Karnagel et al. [146], DIDO [355], HERO [145],
FineStream [352]

Single data partition SABER [163], Beier et al. [28], Bøgh et al. [34]

Task-specific partitions GDB [116], He et al. [120, 121], DB2 BLU [201], HetExchange [54],
SCCG [333], Gubner et al. [106], Lutz et al. [189]

2.5.6.2. Using CPUs and GPUs as generic compute resources

A generic query processing system can employ one of the following three approaches to
distribute its workload.

(1) Operator placement. In this approach, tasks correspond to specific operators in
the query plan. Each task processes all of its input data either on the CPU or GPU. On
the one hand, each task can be scheduled on the most suitable processor. Thus, even
when tasks do not run concurrently, this approach may improve performance compared
to running all tasks on the fastest processor [147]. On the other hand, this approach
may lead to excessive data transfers between CPU and GPU. It may also lead to an
unbalanced utilization of the CPU and GPU [120]. In the extreme case, all tasks are
executed on a single processor and the other is idle.

(2) Single partition of the data. In this approach, the data is partitioned once and
the CPU and GPU execute the entire query on their partition. On the one hand, both
the CPU and the GPU contribute to the progress of the query. With an accurate cost
model, or dynamic work stealing of discrete data batches, both processors can finish at
the same time. On the other hand, both processors also execute tasks for which they
may not be suitable.

(3) Task-specific data partitions. In this approach, the system partitions the data
individually for each task, to take the task-specific throughput of each processor into
account. This approach combines the advantages of the previous two approaches [120].
The schedule takes the strengths of each processor into account but no processor is idle.
When the partition ratios of different tasks vary greatly, because the characteristics of
the tasks match different processors, this approach leads to increased communication
and data transfer between the CPU and the GPU. Therefore, it is especially suited
for integrated CPU/GPU systems, where CPU and GPU compute units can closely
cooperate [120].

In Table 2.8, we classify existing work according these approaches.
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Table 2.9.: Publications describing or implementing different task granularities in generic
systems, from coarse to fine-grained.

Granularity Publications

Query SABER [163]
Pipeline HetExchange [54]
Operator GDB [116], CoGaDB [42], DB2 BLU [201], DIDO [355], FineStream [352],

SCCG [333], Lutz et al. [189]
Primitive HERO [145], He et al. [120, 121]

Table 2.10.: Publications describing or implementing data partitioning strategies.

Partitioning Size Publications

Horizontal Arbitrary GDB [116], He et al. [120, 121], DB2 BLU [201]

Discrete SABER [163], HetExchange [54], DIDO [355], SCCG [333], Beier
et al. [28], Bøgh et al. [34], Gubner et al. [106], Lutz et al. [189]

Vertical Approximate & Refine [247], CoGaDB [42]

2.5.7. Task granularity

As we mentioned in the previous section, in specialized query processing systems, the
assignment of individual tasks to a processor depends on the specific algorithm design
chosen by a developer. Generic systems divide the workload along a continuum of fine-
grained or coarse-grained tasks. In Table 2.9, we give specific examples of different
granularities and classify existing work.

Scheduling more fine-grained tasks has a number of advantages because they are less
complex and have limited functionality compared to more coarse-grained tasks. First,
they can be more easily mapped to a suitable processor [120]. Second, black-box cost
models that rely on historical data can make more precise predictions of their run-
time [145]. For example, the specific execution semantics of a complex operator may
depend on its position in the query plan. Therefore, more coarse-grained database opera-
tors exhibit a larger runtime variation than more fine-grained primitives [145]. However,
a large number of fine-grained tasks can lead to more data transfers when each task is
scheduled independently, without taking the resulting data transfers in subsequent tasks
of the query plan into account [145]. Therefore, more fine-grained tasks work especially
well on integrated CPU/GPU systems, where CPU and GPU compute units can closely
cooperate [120].
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2.5.8. Data partitioning

Finally, we can categorize query processing systems by their strategy to partition the
input data. A system can partition data horizontally in arbitrarily-sized partitions or
discretely-sized batches. As we describe in Section 2.5.5.4, partitioning the data hori-
zontally forms the basis for balancing the load on CPUs and GPUs in a heterogeneous
system, either through cost models, work stealing, or morsel-driven parallelism. A sys-
tem can also partition data vertically. CoGaDB [44] partitions data by columns to cache
columns on the GPU and increase data locality. Approximate & Refine [247] partitions
data by bits to compute an approximate query answer on the GPU and increase the util-
ity of GPU-resident data. We classify existing work according the partitioning strategy
in Table 2.10 and provide a more granular classification in Table 2.15 on page 60.

2.5.9. End-to-end integration

A complete heterogeneous query processing system must take the availability of comput-
ing resources into account before scheduling tasks on the CPU or the GPU. DB2 BLU
demonstrates that this can be achieved in an ad-hoc manner in an industrial database.
DB2 BLU tracks the usage of GPU memory and only assign tasks to a GPU if it has
enough resources [201]. This approach assumes that the system will only assign tasks to
the GPU that benefit from GPU acceleration in the first place, according to the heuris-
tics described in Section 2.5.5.1. However, if the GPU is busy, the CPU can still make
progress on the query.

A more involved scheduler employs cost models to track the estimated execution time
of the current CPU and GPU workloads. This approach is taken by CoGaDB [42] and
SABER [163] to balance the load of both processors. The same information can be used
to reduce the query admission rate under general high system load.

2.5.10. Summary

A heterogeneous query processor has many degrees of freedom to decide the general
strategy on how to employ each processor; when to fix the schedule and based on what
strategy; and how to distribute the workload and at what granularity. In this section,
we reviewed these scheduling dimensions in general. In Section 2.8, we categorize differ-
ent heterogeneous query processing systems according to this classification scheme and
discuss main trends. In Appendix A we describe the scheduling decisions of selected
heterogeneous query processing systems in more detail.
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2.6. Architecture-specific query processing

As we discussed in Section 2.3, CPUs and GPUs have to be programmed differently due
to their architectural differences. Consequently, we also have to adapt query processing
code to the specific processor it runs on to achieve peak performance. Unfortunately, this
adaptation increases the development cost of heterogeneous query processing systems.
Developers of such systems must not only have expertise in query processing but also
detailed knowledge about different processor architectures. In this section, we review
techniques to reduce this implementation complexity. We approach the performance
implications of a heterogeneous system on two levels, the high-level query execution
plan and low-level operator implementations.

2.6.1. High-level query execution plan

Query processing systems that use CPUs and GPUs as dedicated processors for specific
tasks typically implement a fixed query processing pipeline that already takes the differ-
ent architectures of CPUs and GPUs into account. In these cases, the system has little
or no degree of freedom to choose between different high-level plans.

However, in other cases, specifically for relational query processing, the query pro-
cessing system has a wide latitude to choose a physical query execution plan. With the
exception of Agbaria et al. [9], all of the surveyed relational query processors on GPUs
execute query plans that are produced by a traditional query optimizer that targets
CPUs. On the one hand, this approach greatly simplifies the implementation complex-
ity of a heterogeneous query processor. It reduces the scheduling problem to a decision
where to execute specific operators and/or primitives and how to distribute the input
data. On the other hand, a query plan optimized for CPUs is not necessarily optimal
for GPUs [9].

With the exception of GPUTx [119], early relational query processors target analytical
workloads. Consequently, they are bulk processors and implement an operator-at-a-time
processing model [45]. However, this processing model suffers from high materialization
costs [38]. It generates a large amount of GPU device memory traffic [87] and large data
transfers over the system bus [44].

Modern query processors on CPUs implement a processing model that is based on in-
cache vectorization [38] or on query compilation [208]. A detailed analysis of these two
processing models shows that both achieve similar performance for analytical queries but
neither is clearly dominated by the other and the fastest processing model depends on the
specific query [151]. Vectorization is better at hiding cache miss latencies whereas query
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Table 2.11.: Publications describing or implementing different query processing models.

Processing model Publications

Bulk processing GDB [116], Ocelot [123], CoGaDB [42], SABER [163], DB2 BLU [201],
HERO [145]

Vectorization He et al. [120], He et al. [121], GPL [244], Körber et al. [164]

Query compilation Hawk [46], HorseQC [87], HetExchange [54], DogQC [89],

compilation has a higher computational efficiency [151]. Consequently, recent state-of-
the-art relational query processors implement a combination of both processing models
and employ vectorization and code generation for different parts of a query plan [151,
172, 199].

As we show in Table 2.11, vectorization and query compilation have been implemented
in relational query processors on the GPU. Furthermore, He et al. [120, 121] and Het-
Exchange [54] implement pipelined query processing across CPUs and GPUs. However,
so far there is no apples-to-apples comparison that investigates the relative advantages
of these processing models on GPUs.

For example, query compilation can exacerbate the effect of control flow divergence
when different threads of a warp become inactive because of filter predicates or skewed
data distributions [89]. In this case, the warp workload inside a pipeline must be rebal-
anced to reduce the effect of control flow divergence and achieve robust query execution
times [89]. Furthermore, by its nature, query compilation generates coarse-grained tasks.
It is therefore particularly well suited for heterogeneous query processing on systems
with dedicated GPUs. In contrast, on integrated GPUs, coarse-grained compiled query
pipelines limit the ability of a system to schedule fine-grained tasks on the most suitable
processor. However, query compilers can adapt the task granularity by introducing ar-
tificial pipeline breakers into the query plan and splitting a query pipeline into separate
tasks to better take advantage of the different capabilities of CPUs and GPUs.

2.6.2. Low-level operator implementations

In contrast to high-level query plans, low-level operator implementations are regularly
optimized for a specific processor type. For example, multiple GPU threads often need
to effectively cooperate with each other to achieve peak performance [89, 187] which
is not the case on CPUs. Consequently, a heterogeneous query processor that uses
CPUs and GPUs as generic compute resources requires optimized operator implementa-
tions for both processors. In the extreme case, GDB [116] contains completely separate
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Table 2.12.: Publications describing or implementing different operator implementation
strategies.

Strategy Publications

Separate operator implementations GDB [116], CoGaDB [42], SABER [163], DB2 BLU [201],
HERO [145], SCCG [333], Beier et al. [28], Lutz et al. [189]

Hardware-oblivious operators Ocelot [123], DIDO [355], He et al. [120, 121],
FineStream [352]

Template-based code generation Bøgh et al. [34], HetExchange [54]

Intermediate representation Voodoo [248], Hawk [46]

Learned operator implementations Rosenfeld et al. [268], Hawk [46], Rosenfeld et al. [267]

implementations that utilize different programming frameworks, i.e., CUDA [211] for
GPU operators and OpenMP [65] for CPU operators. Having separate operator im-
plementations for different processors greatly increases implementation complexity of a
heterogeneous query processor. In the following, we discuss four strategies to reduce this
implementation complexity: hardware-oblivious databases, template-based code genera-
tion, intermediate languages, and learned operator implementations. In Table 2.12, we
list publications that describe or implement these strategies.

2.6.2.1. Hardware-oblivious operators

Hardware-oblivious databases run the same operator implementations on any proces-
sor. DIDO [355], He et al. [120, 121], and FineStream [352] rely on OpenCL [300] to
support operator implementations for different processors from a common code base.
OpenCL code is formulated in an abstract programming model (see Section 2.3.4) and
hardware-specific functionality is offloaded to a vendor-provided OpenCL driver. How-
ever, although OpenCL provides functional portability, it does not ensure performance
portability [272]. An OpenCL-based operator implementation still has to be optimized
to a specific processor in order to achieve peak performance. Thus, no system is en-
tirely hardware-oblivious. Even Ocelot [123], which introduced the term, uses processor-
optimized memory access patterns, hash table implementations, and reduction schemes.
Nevertheless, Ocelot uses an integrated code base for CPU and GPU operators which
reduces code volume and complexity [123].
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2.6.2.2. Template-based code generation

Query processors that rely on query compilation can adapt the generated code to a
specific processor type. A straight-forward approach is to first generate a high-level
execution plan template that contains stubs for individual data processing operators [54].
During a second compilation pass, these stubs are specialized by processor-specific code
generators.

2.6.2.3. Intermediate representation

Improving on template-based code generation, a query compiler can first generate a
query plan in a hardware-oblivious, declarative intermediate representation (IR). Such
a formalized IR allows the query processing system to reason about hardware-specific
optimizations in a structured way. For example, Voodoo [248] uses control vectors to
map data items to virtual partitions. These virtual partitions express information about
parallel execution, e.g., using SIMD registers on CPUs or interleaved access on GPUs, in
a declarative, hardware-independent way. Hawk [46] uses pipeline programs, which are
parameterized representations of operator pipelines [208], to describe the dataflow of an
operator pipeline and to encapsulate implementation variants of individual operators.
These pipeline programs can be adapted to a specific processor using well-defined trans-
formation rules. This approach is not limited to query processing systems. For example,
TVM [52] applies structured transformations over an IR for deep learning programs.

2.6.2.4. Learned operator implementations

Even a small number of implementation parameters create a large space of possible oper-
ator implementations [268]. GPUs are especially sensitive to implementation details and
suffer large performance penalties from implementations that are not optimized for the
specific GPU [267]. Thus, devising fast operator implementations requires careful tuning
of implementation parameters which is time-consuming and relies on expert knowledge.
However, given a declarative specification of the implementation search space, a query
compiler can adapt its output to a specific processor automatically [46]. A number of
search strategies, based on genetic algorithms [268], local search [46, 267], or machine
learning [52], have been proposed to automate the task of finding fast operator imple-
mentations.
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2.6.3. Reverse engineering of GPU hardware details

Hardware vendors are reluctant to disclose low-level hardware details which are useful
to optimize operator implementations on GPUs [137], e.g., the TLB cache size [144].
Consequently, such information has to be reverse engineered through microbenchmark-
ing. Jia et al. [136, 137] provide an overview of previous microbenchmarking efforts on
NVIDIA GPUs.

2.6.4. Summary

Heterogeneous relational query processors typically execute query plans generated by a
traditional query optimizer that targets CPUs. We are only aware of one publication
investigating whether query plans should be adapted to run efficiently on GPUs [9]. In
addition, there is no apples-to-apples comparison between vectorization and query com-
pilation on GPUs. In contrast, low-level operator implementations are highly optimized
for different processor types. A number of strategies, based on OpenCL and code gener-
ation, are used to produce processor-specific optimized operator implementations from
a shared code base, in order to reduce implementation complexity.

2.7. The data transfer bottleneck

Dedicated GPU have more compute power and much higher memory bandwidth than
CPUs. However, to process data on a dedicated GPU, it must first be transferred over
a system bus, e.g., PCIe 3.0. Unfortunately, the transfer bandwidth of PCIe 3.0 is an
order of magnitude slower than that of CPU main memory (see Figure 2.2 on page
23). This imbalance leads to a severe bottleneck when using dedicated GPUs for data
processing [99]. In fact, reducing transfers, or increasing transfer bandwidth, has a bigger
impact on performance than increasing the computational power of GPUs [261, 343]. In
this section, we discuss the impact of this data transfer bottleneck as well as common
mitigation techniques.

2.7.1. Impact of the data transfer bottleneck

The data transfer bottleneck impacts operator performance and data management com-
plexity.
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2.7.1.1. Impact on operator performance

The impact of the data transfer bottleneck on operator performance depends on their
data access characteristics and computational complexity.

Bandwidth-bound operations. Since CPU main memory is faster than transfer-
ring data over PCIe 3.0, operations that process data sequentially, e.g., selections or
ungrouped aggregations, are always faster on the CPU [116, 189].

Latency-bound and compute-bound operations. Latency-bound operations
typically perform random access to (large) internal state, e.g., joins [55, 142, 189, 289],
grouped aggregations [149, 201, 267], or index lookups [28, 283]. Since GPU device
memory is faster than CPU main memory and larger than CPU caches, these oper-
ations can overcome the data transfer bottleneck. Operations that perform multiple
passes over their inputs, e.g., sorting [94, 201, 298], also benefit from fast GPU memory.
Compute-bound operations, e.g., temporal-spatial queries [177, 351], benefit from the
computational power of the GPU.

Complex queries. Early research on relational query processing on GPUs sought
to quantify data transfer overheads [116, 118]. However, these implementations per-
formed multiple passes over the same data, which exacerbates the bottleneck, and did
not overlap data transfers with computation, which is a common mitigation technique
(see Section 2.7.2.1). Recent work on single-pass compiled query pipelines shows that
all SSBM [230] and most TPC-H [323] queries are bottlenecked by the PCIe 3.0 transfer
bandwidth [87].

2.7.1.2. Impact on data management complexity

The need to transfer data over PCIe 3.0 complicates data management in three important
ways.

Pinned memory. To achieve high transfer speeds, data must be “pinned” in main
memory, i.e., memory pages have to be locked at their physical location [213]. In this
case, the GPU can transfer data via direct memory access (DMA), which does not require
CPU or operating system (OS) intervention. However, pinned memory cannot be paged
out by the OS and therefore is a scarce resource. Copying data on-demand into pinned
buffers can match the speed of transferring from pinned memory directly, but exhibits
high CPU utilization [189].

Transfer of large sequential blocks. PCIe 3.0 transfers data in packets which
consist of a header of 20-28 bytes and a payload of up to 512 bytes [207]. Irregular
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Table 2.13.: Publications describing or implementing techniques to mitigate the data
transfer bottleneck.

Technique Publications

Overlapping Kaldewey et al. [142], GPUDB [343], Karnagel et al. [149],
HB+-tree [283], SABER [163], Caldera [19], Stehle et al. [298],
HetExchange [54], Sioulas et al. [289], Rosenfeld et al. [267], Gubner
et al. [106], Raza et al. [261]

Compression Fang et al. [80], Pirk et al. [249], GPUDB [343], Rozenberg et al. [271],

Approximation Pirk et al. [247], Zhang et al. [356]

Caching Ocelot [123], CoGaDB [44], HERO [145], GAT [351], Raza et al. [261]

Data locality CogaDB [44], HERO [145], HetExchange [54, 55]

Single-pass algorithms Kaldewey et al. [142], Karnagel et al. [149], HorseQC [87], Lutz
et al. [188]

Heterogeneous execution Statistical coprocessor [122], Stehle et al. [298], STIG [70], GAT [351]

Faster system bus Lutz et al. [189], Raza et al. [261]

transfers of small data significantly reduce the effective transfer bandwidth [207] and
compete with random access to main memory by the CPU [261]. A query processing
system can overcome these overheads only when the amount of transferred data is signif-
icantly reduced, e.g., through previously applied, highly selective filter predicates [261,
343].

Manual synchronization. The separate GPU device memory is not coherent with
CPU main memory. Therefore, a data processing system must manually synchronize
data structures that are shared across both processors.

2.7.2. Mitigation techniques

In the following, we review seven techniques to mitigate the data transfer bottleneck:
(1) overlapping transfer with execution; working on (2) compressed or (3) approximate
data; (4) caching, (5) exploiting data locality; (6) single-pass algorithms; and (7) het-
erogeneous execution. These techniques can and should be combined to improve perfor-
mance. We list publications describing or implementing these techniques in Table 2.13.

2.7.2.1. Overlapping transfer with execution

A naive implementation would first transfer data to a dedicated GPU, then execute
a kernel, and finally transfer the results back. In such a serialized processing scheme,
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the GPU and the system bus are often idle and the effective transfer bandwidth and
computational throughput are greatly reduced.

To reduce idle time, GPUs can overlap kernel execution and data transfers in both
directions, either through a software-managed staged pipeline or hardware-managed zero-
copy [213]. In a software-managed staged pipeline, we partition the data and then
transfer and process each partition independently. In this strategy, the data is pushed
to the GPU. Using hardware-managed zero-copy, CPU memory is mapped into the
GPU address space. When memory-mapped data is accessed by a kernel, the GPU
transparently transfers it over the PCIe bus. In this strategy, the data is pulled by the
GPU. Both strategies achieve the same sequential transfer bandwidth [189] but differ in
their ability to cache data or exploit selective predicates.

Zero-copy reduces software complexity but transfers data on every access. Therefore,
it should not be used for data that is accessed multiple times. Since zero-copy only
transfers data that is actually accessed by the kernel, previously applied selective filter
predicates reduce the amount of transferred data. However, in this case, the GPU
transfers small data packets over the PCIe 3.0 bus which reduces the effective transfer
bandwidth [207] and competes with random main memory accesses of the CPU [261].
In contrast, pipelining allows us to cache data in GPU memory and access it multiple
times. However, pipelining always transfers all of the data and does not benefit from
previously applied selective filter predicates.

The best transfer strategy depends on the data access pattern. Selecting an appro-
priate transfer strategy for different columns of relational data yields faster performance
than using either zero-copy or explicit pipelining alone [261].

Note that to overlap kernel execution and transfer over PCIe, both approaches require
data to be pinned in CPU memory, which is a scarce resource (see Section 2.7.1.2). In
contrast, dedicated GPUs that are connected by a coherent system bus can also access
unpinned memory directly, including memory that is paged out by the OS [189].

2.7.2.2. Compression

In disk and memory-based database systems, compression is a proven technique to im-
prove query performance [4, 98, 335, 360]. Compression provides two benefits [98]. (1) It
effectively trades computation time to decompress data against the time and space re-
quired to transfer and store uncompressed data. (2) Some operations can work directly
on compressed data, which also reduces computation time.

A number of lightweight compression schemes have been implemented on the GPU [80,
271]. Given the computational power of GPUs and their high memory bandwidth, com-

54



pression is particularly effective: multiple lightweight compression schemes can be cas-
caded to achieve a high compression ratio [80]. Thus compression alleviates both the
limited transfer bandwidth of PCIe as well as the small capacity of GPU memory. On
integrated GPUs, compression can improve performance by increasing the effective main
memory bandwidth [121]. To improve access locality, CPU-optimized databases typi-
cally store compressed data in chunks, where each chunk contains all the information
required to decompress a single [360] or multiple [172] attribute(s) of a number of ele-
ments. However, such a storage layout is not suitable for GPUs; instead, the information
required to decompress a single attribute is stored in separate arrays [271].

2.7.2.3. Approximation

The lightweight compression schemes discussed in the previous section are lossless, i.e.,
we can reconstruct the exact data. Alternatively, the GPU can also operate on lossily
compressed data. Lossy compression achieves a very high compression ratio at the cost
of a post-processing step on the CPU, since the GPU only produces an approximate
result.

For example, in the Approximate & Refine query processing model [247], individual
attributes are bitwise partitioned. The most significant bits of an attribute are stored
on the GPU and the least significant bits on the CPU. Each relational operator first
computes an approximate result on the GPU which is then refined on the CPU to
produce an exact result. This scheme not only enables the GPU to process data that is
much larger than GPU memory but also eliminates the transfer of input data entirely.

2.7.2.4. Caching

We can use GPU memory to cache input data and intermediate results. Caching is
especially useful for operations that access data multiple times, e.g., sorting. However,
the relatively small capacity of GPU memory limits the effectiveness of caching to reduce
transfers of large data sets. Moreover, caching is not effective when data changes often,
e.g., for stream processing or key-value store workloads.

Data-driven operator placement [44] combines caching with a scheduling strategy. The
query processing system monitors the query workload and periodically moves frequently
accessed data to the GPU. Subsequent operations are scheduled on the GPU only if
all their inputs reside in GPU memory. Transfer sharing [261] applies the concept of
scan sharing [110] to data transfers to the GPU. The system monitors data transfer re-
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quests and consolidates transfers of the same data by different queries. Both approaches
amortize the data transfer costs over multiple queries.

2.7.2.5. Data locality

Data transfers can be avoided if a query processing task is scheduled on the processor in
whose memory the input data is already located. This heuristic is especially useful for
query processing systems which treat CPUs and GPUs as generic compute resources, as
well as for heterogeneous computing systems which contain multiple GPUs. We discuss
data locality as a scheduling strategy in detail in Section 2.5.5.3.

Data locality is also an important consideration on integrated GPUs, since CPU and
GPU compute units incorporate separate cache hierarchies [355].

2.7.2.6. Single-pass algorithms

Since early GPUs did not support atomic operations well, data processing on GPUs
relied on lock-free algorithms that perform multiple passes over the input [116, 118].
These algorithms materialize intermediate results and are often bound by GPU memory
bandwidth [87]. More importantly, if the data does not fit into GPU memory, it must
be transferred over the PCIe bus multiple times. Single-pass algorithms eliminate these
multiple transfers and also use GPU memory more efficiently [87].

2.7.2.7. Heterogeneous execution

A query processing system, which treats CPUs and GPUs as specialized processors,
can implement an algorithm to solve a complex query processing task that reduces the
impact of the data transfer bottleneck. In the following, we give three examples. (1) We
already discussed approximate processing on the GPU which requires a post-processing
step on the CPU to produce exact results. (2) The CPU can use an index to filter
data that is transferred to the GPU [70, 351]. (3) To sort very large data sets, we
can partition the data and sort each partition on the GPU using a software-managed
data transfer pipeline. The sorted partitions are then merged on the CPU at full main
memory speed [298].

2.7.3. Faster system bus

The techniques described in the previous section are software approaches to mitigate
the effect of the data transfer bottleneck. By connecting GPUs over a faster system bus
than PCIe 3.0, we can also directly increase the transfer bandwidth. PCIe 4.0, which
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doubles the transfer bandwidth, is already supported in recent CPUs [240, 302, 329] and
GPUs [192, 217]. IBM has announced support for PCIe 5.0 on POWER10 CPUs [297],
which again doubles the transfer bandwidth.

There are also dedicated buses that provide fast transfers and coherent access between
CPUs and GPUs. However, they are not yet widely deployed. At the moment, IBM
Power9 CPUs [274] can access NVIDIA GPUs over NVLink 2.0 [225] which provides 5×
the transfer bandwidth of PCIe 3.0 [189]. AMD and Intel also integrate fast coherent
CPU/GPU interconnects in current supercomputer architectures [161, 231]. These are
similar to, or based on, Infinity Architecture 3, which is 4.5× faster than PCIe 3.0 [241],
and Compute Express Link over PCIe 5.0 [284], which is 4× faster than PCIe 3.0.

These interconnects reduce, but do not eliminate, the impact of the data transfer
bottleneck, especially for scan-dominated queries [189]. More importantly, since these
interconnects support coherent access between the CPU and GPU, both processors can
modify shared data structures simultaneously. This capability allows for fine-grained
cooperation and makes dedicated GPUs more similar to integrated GPUs.

However, none of these developments fundamentally change the status quo that access-
ing CPU main memory is significantly faster than transferring data to a dedicated GPU.
We list publications that evaluate query processing over fast interconnects in Table 2.13.

2.7.4. Summary

The slow system bus represents a significant bottleneck for query processing on dedicated
GPUs that constraints the implementation of heterogeneous query processing systems.
Nevertheless, a number of techniques are able to mitigate the data transfer bottleneck
effectively.

2.8. System survey

In this section, we survey the literature on query processing on heterogeneous CPU/GPU
systems. We classify query processing systems according to their scheduling decisions,
their approach to handle architecture-specific implementations, and the techniques em-
ployed to mitigate the data transfer bottleneck. In this section, we discuss the major
trends, whereas we describe selected systems in detail in Appendix A.
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Table 2.14.: Reviewed publications.

(a) Full query processing systems

Publication Year Domain
GDB [116] 2009 Relational queries
Approximate & Refine [247] 2014 Relational queries
CoGaDB [42] 2014 Relational queries
He et al. [121] 2014 Relational queries
Stat. coproc. [122] 2015 Query optimization
Mega-KV [356] 2015 Key-value store
SABER [163] 2016 Stream processing
DB2 BLU [201] 2016 Relational queries
Caldera [19] 2017 Hybrid transactional/analytical
DIDO [355] 2017 Key-value store
HERO [145] 2017 Relational queries
HetExchange [54] 2019 Relational queries
Raza et al. [261] 2020 Hybrid transactional/analytical
FineStream [352] 2020 Stream processing

(b) Individual query processing tasks

Publication Year Domain
SCCG [333] 2012 Image processing
Beier et al. [28] 2012 Generalized index
GSS [33] 2013 Skyline operator
He et al. [120] 2013 Hash join
HELLS join [148] 2013 Stream join
STIG [70] 2016 Spatio-temporal index
HB+-tree [283] 2016 B+ tree
Stehle et al. [298] 2017 Radix sort
Bøgh et al. [34] 2017 Skycube operator
G-Grid [177] 2018 Road networks
GAT [351] 2018 Trajectory queries
Gubner et al. [106] 2019 Bloom filter for joins
Sioulas et al. [289] 2019 Hash join
Lutz et al. [189] 2020 Hash join
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2.8.1. Selection criteria

Our survey covers the literature published in relevant peer-reviewed data processing
conferences in the last decade. We broadly categorize the literature into two groups:
those that cover full query processing systems and those that focus on an individual
query processing tasks. We show the covered publications in Table 2.14 along with the
publication year and the domain. In total, we cover seven relational query processors,
two key-value stores, two stream processing systems, two HTAP systems, one query
optimization system, as well as fourteen papers on individual query processing tasks.

The classical GPU programming model described in Section 2.3.4 treats the GPU as
a coprocessor controlled by a host CPU. In this programming model, the CPU is always
involved in GPU processing since it orchestrates computation on the GPU and data
transfers. We exclude from our survey query processing systems that limit the CPU
to these tasks. Instead, we only include systems in which both the CPU and the GPU
either process data directly, or perform an incidental task such as query optimization.

2.8.2. Classification criteria

In Table 2.15, we categorize query processing systems according the classification scheme
we developed in Section 2.5 to describe their scheduling decisions. An overview of the
classification scheme is shown in Figure 2.4 on page 34. Additionally, we include the
type of GPU integration as a category. As we will discuss shortly, the type of GPU
integration strongly influences the scheduling decisions. Note that if the workload is
distributed in an algorithm-specific way, we do not provide the task granularity or data
partitioning. If the workload is distributed by a single data partition, there is typically
no task granularity because the CPU and the GPU perform the same tasks on different
data.

In Table 2.16, we categorize the processing model and the operator implementation
strategy of query processing systems that use both processors as generic compute re-
sources. A summary of the two categories is shown in tables 2.11 and 2.12 on page 48.
Note that the processing model is only a useful category if the system processes generic
queries, i.e., for relational queries or stream queries, as well as for HTAP systems.
Key-value stores or individual query processing tasks typically either implement a fixed
pipeline or a single operator.

In Table 2.17, we list which techniques to mitigate the data transfer bottleneck are
employed by query processing systems that are implemented on a dedicated GPU. A
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summary of these techniques is shown in Table 2.13 on page 53. We also specify whether
a system can scale to arbitrarily sized inputs using out-of-core processing.

2.8.3. Discussion

Two categories have an outsized influence on the scheduling decisions of heterogeneous
query processing systems: the processor usage strategy and the type of GPU integration.
In the following we discuss these in more detail. We also discuss general trends how
these systems implement operators for multiple processors and mitigate the data transfer
bottleneck.

2.8.3.1. Influence of processor usage

Seven of the fourteen full query processing systems use CPUs and GPUs as generic
compute resources (generic systems). Specifically, these are systems that process arbi-
trary relational or stream queries, e.g., GDB [116], CoGaDB [42], He et al. [121], DB2
BLU [201], HERO [145], HetExchange [54], and SABER [163]. Additionally, two systems,
He et al. [121] and DIDO [355] use CPUs and GPUs as hybrid resources (hybrid systems).
In contrast, eight of the fourteen systems implementing an individual query processing
task use CPUs and GPUs as specialized processors (specialized systems). Since they fo-
cus on a specific operation, these systems implement a heterogeneous processing strategy
that assigns specific tasks to each processor.

The processor usage in turn strongly influences the remaining scheduling decisions.
Specialized systems map specific tasks to the most suitable processor, i.e., they execute
a static schedule based on the nature of the task. In our survey, the only exception is
the HB+-tree [283] which uses a cost model to determine how many nodes below the
root are processed on the CPU instead of the GPU.

In contrast, twelve of the fifteen generic or hybrid systems execute a dynamic or hybrid
schedule. Since these systems can execute tasks on any processor, they often defer this
decision to runtime. However, GDB [116], CoGaDB [42], and He et al. [121] execute a
static physical query plan determined by a cost model during query compilation. Generic
or hybrid systems utilize all scheduling strategies and nine of them use a combination
of different strategies. Nine systems use cost models, eight use explicit load balancing,
six use task nature, and three use explicit data locality as their scheduling strategy.
Additionally, another four and three systems use their cost models to implicitly balance
processor load and exploit data locality, respectively.
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Eight of the fifteen generic or hybrid systems distribute the workload using task-
specific partitions. CoGaDB [42], and HERO [145], DIDO [355], and FineStream [352]
implement an operator placement strategy. Beier et al. [28] and Bøgh et al. [34] imple-
ment a single operation and distribute the data to perform heterogeneous processing.
SABER [163] distributes complete queries to the CPU or the GPU.

Six of the eight generic or hybrid systems that employ cost models implement fine-
grained tasks. There are two explanations. (1) CoGaDB [42] and HERO [145] implement
operator placement strategies for relational queries based on learned cost models. For
this use case, Karnagel et al. [145] argue that fine-grained tasks exhibit less runtime
variation and are therefore more suitable for the cost model than coarse tasks. (2)
The remaining systems, DIDO [355], He et al. [120, 121], and FineStream [352], are
implemented on integrated GPUs. These GPUs favor fine-grained tasks as we discuss
next.

2.8.3.2. Influence of GPU integration

23 of the 28 surveyed query processing systems target dedicated GPUs. Since dedicated
GPUs offer high compute performance and GPU memory bandwidth, they are interesting
research targets. Conversely, integrated GPUs, which are traditionally targeted towards
the mobile market, are less powerful and possibly attract fewer researchers.

However, research results based on dedicated GPUs are not necessarily transferable
to integrated GPUs. The GPU integration strongly influences how to implement a
heterogeneous query processing system, specifically the task granularity. Every system
in our survey targeting integrated GPUs employs fine-grained tasks. Indeed, the close
cooperation between CPU and GPU compute units is one of the main advantages of
these systems. In contrast, systems targeting dedicated GPUs generally use coarse
tasks. In our survey, the only exceptions are CoGaDB [42] and HERO [145]. As we
already discussed, fine-grained tasks are suitable for their learned cost models because
they exhibit less runtime variation.

The dependence of the task granularity on the type of GPU integration strongly
indicates that the data transfer over the slow system bus is the main bottleneck for
heterogeneous query processing on dedicated GPU. Coarse tasks are more efficient for
dedicated GPUs because there is less communication over the system bus. In contrast,
on integrated GPUs, a heterogeneous query processing system has more freedom to
schedule fine-grained tasks on the most suitable processor.
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Table 2.16.: Processing model and operator implementations for heterogeneous query
processing systems that use CPUs and GPUs as generic compute resources.

(a) Full query processing systems

Publication Processing
model

Operator
implementation

GDB [116] Bulk Separate
CoGaDB [42] Bulk Separate
He et al. [121] Vectorization Oblivious
SABER [163] Bulk Separate
DB2 BLU [201] Bulk Separate
DIDO [355] Fixed pipeline Oblivious
HERO [145] Bulk Separate
HetExchange [54] Compilation Template
FineStream [352] Bulk Oblivious

(b) Individual query processing tasks

Publication Processing
model

Operator
implementation

SCCG [333] Fixed pipeline Separate
Beier et al. [28] Fixed pipeline Separate
He et al. [120] Vectorization Oblivious
Bøgh et al. [34] Single operator Template
Gubner et al. [106] Vectorization Separate
Lutz et al. [189] Single operator Separate

2.8.3.3. Processing model and operator implementations

Six of the nine generic or hybrid full query processing systems use a bulk processing
model. Only HetExchange [54] employs query compilation and He et al. [121] employ
in-cache vectorization on integrated GPUs. Additionally, Caldera [19] and Raza et al.
[261] employ query compilation in the implementation of their HTAP systems.

Nine of the fifteen generic or hybrid systems execute separate operator implementa-
tions on CPUs and GPUs. One exception is HetExchange [54] which combines query
compilation with template-based operator implementations. He et al. [121], DIDO [355],
FineStream [352], and He et al. [120], use a hardware-oblivious operator implementation
on both processors. However, we suspect that this is due to a selection bias. Each of these
systems targets an integrated GPU, specifically an AMD Llano or Kaveri processor [40,
41]. These processors are not supported by CUDA. Instead, the authors program them
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Table 2.17.: Support for out-of-core processing (OOC) and data transfer optimizations
for heterogeneous query processing systems on dedicated GPUs.

(a) Full query processing systems

Publication OOC Optimizations
GDB [116] Yes Compression
Approximate & Refine [247] No Compression, Approximation
CoGaDB [42] No Overlap, Caching, Locality
Stat. coproc. [122] — Heterogeneous execution
Mega-KV [356] Yes Approximation
SABER [163] Yes Overlap
DB2 BLU [201] Yes Overlap, Single-pass algorithm
Caldera [19] Yes Overlap
HERO [145] Yes Caching, Locality
HetExchange [54] Yes Overlap, Single-pass algorithm, Locality
Raza et al. [261] Yes Overlap, Caching, Fast interconnect

(b) Individual query processing tasks

Publication OOC Optimizations
SCCG [333] Yes —
Beier et al. [28] Yes Caching
GSS [33] No —
STIG [70] Yes Heterogeneous execution
HB+-tree [283] No Overlap, Heterogeneous execution
Stehle et al. [298] Yes Overlap, Heterogeneous execution
Bøgh et al. [34] No —
G-Grid [177] No Heterogeneous execution
GAT [351] Yes Caching, Heterogeneous execution
Sioulas et al. [289] Yes Overlap
Gubner et al. [106] No Overlap
Lutz et al. [189] Yes Fast interconnect, Overlap

in OpenCL. Ocelot [123], which proposed hardware-oblivious operator implementations
based on OpenCL, targets any type of GPU. However, it appears that users rather pro-
gram dedicated NVIDIA GPUs in CUDA because of its advanced features and better
tool support.
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2.8.3.4. Data size limitations

Fifteen of the 23 query processing systems targeting dedicated GPUs support out-of-core
processing by horizontally partitioning the data. In principle, these systems can scale to
arbitrarily large data sizes. GSS [33] and Bøgh et al. [34] perform a compute-intensive
skyline or skycube computation on a small amount of data that is measured in a few
hundred MBs. Similarly, G-Grid [177] performs a compute-intensive spatial query on a
road network. The largest evaluated dataset is 3.5 GiB which comfortably fits into the
memory of dedicated GPUs.

Even query processing systems that do not scale arbitrarily can process data that
exceeds the GPU memory. For example, CoGaDB [42] partitions data vertically and is
limited by columns that have to fit on the GPU. In Approximate & Refine [247], the
available GPU memory limits the size of the approximate data set stored on the GPU.
The HB+-tree [283] stores inner nodes of an B+ tree on the GPU but not its leaves.
In Gubner et al. [106], the GPU stores a bloom filter which is much smaller than the
corresponding key column. Finally, the statistical coprocessor [122] uses the GPU for
selectivity estimation during query optimization.

2.8.3.5. Data transfer bottleneck mitigation

Overlapping data transfers with computation is the most popular technique to mitigate
the data transfer bottleneck and is implemented by ten of the 23 systems targeting ded-
icated GPUs. This is not surprising, since this technique is well supported by GPU
hardware and simplifies the algorithm design. Five of the eleven systems that imple-
ment individual query processing tasks on dedicated GPUs, design their heterogeneous
processing strategy to reduce data transfers.

Only two systems employ lossless compression for arbitrary data types, i.e., GDB [80,
116], which is the oldest of the surveyed relational query processors, and Approximate
& Refine [247, 249]. This is surprising, since GPUs are well suited for compression [80].
A possible reason may be that a CPU-optimized storage layout for compressed data is
not directly suitable for GPUs [271]. He et al. [121] also employ compression, however,
since this system targets integrated GPUs, we do not list it in Table 2.17. Further-
more, CoGaDB [42] employs dictionary encoding to store strings; SABER [163] employs
frame-of-reference encoding to compress write positions for selection and join results;
the HELLS join [148] employs bitmap compression for join matches; and Beier et al.
[28] transform the sparse index lookup result matrix into a dense representation. Since
these systems do not employ compression in a generalized way, we also do not list them
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in Table 2.17. Finally, Approximate & Refine [247] and Mega-KV [356] employ lossy
compression, i.e., approximation, to reduce data transfers.

2.8.4. Summary

Our survey shows that the processor usage pattern and the type of GPU integration have
the strongest influence on scheduling decisions. Query processing systems that use CPUs
and GPUs as specialized processors for specific tasks generally execute a static schedule
based on the nature of the task. In contrast, systems that use CPUs and GPUs as generic
compute resources exhibit a large diversity in their scheduling decisions. Systems that
target dedicated GPUs generally use coarse-grained tasks whereas systems that target
integrated GPUs use fine-grained tasks.

Most query processing systems can scale to data sizes that exceed dedicated GPU
memory. Compression is underused as a technique to reduce the data transfer bottleneck,
especially since GPUs are well suited to it.

2.9. Key insights and open research problems

The key insight of our survey is that heterogeneous systems with dedicated and integrated
GPUs are different classes and place different demands on heterogeneous query process-
ing. In both cases, the GPUs have similar strengths and weakness, and are used for
comparable tasks. However, as we discuss next, the key to achieve high performance is
different for dedicated and integrated GPUs.

2.9.1. Performances guidelines for query processing on dedicated and
integrated GPUs

Dedicated GPUs should perform specialized coarse-grained tasks. On these systems, the
slow interconnect is the main performance bottleneck and data transfers should be
avoided as much as possible. This bottleneck precludes fine-grained cooperation be-
tween the CPU and GPU, which relies on frequent and low-latency exchange of data.
For example, instead of scheduling fine-grained primitives, the query processing system
should schedule compiled query pipelines [54, 87]. It is worthwhile to investigate how to
reformulate query processing problems to radically reduce transferred data, e.g., using
techniques such as approximate processing on the GPU [247, 356].

Integrated GPUs should cooperate closely with the CPU. These systems are not con-
strained by the data transfer bottleneck. Instead, CPU and GPU compute units are
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connected by a fast and coherent on-chip fabric and can modify shared data structures
simultaneously. This architecture makes it possible to schedule fine-grained tasks on the
most suitable compute unit. For example, CPU compute units can prefetch sequential
data [121], whereas GPU compute units can hide the latency of random accesses [355].
We are not aware of publications investigating how to accelerate hybrid transaction-
al/analytical processing systems, or spatio-temporal queries through coprocessing on
integrated GPUs. The architecture of integrated GPUs is similar to that of asymmetric
multi-core processors and it is worthwhile to investigate heterogeneous query processing
techniques [204] on these processors.

2.9.2. Open research problems

In addition to missing research into query processing applications on integrated GPUs,
we also identified the following five open research areas regarding heterogeneous query
processing on GPUs in general. These cover a lack of understanding of the performance
of atomic operations on GPUs, GPU hardware features that have not yet been exploited
for query processing, and the integration of CPU and GPU query processing models.

(1) How do atomic operations influence GPU performance? Fast single-pass GPU
algorithms, as well as fine-grained cooperation between integrated CPU and GPU com-
pute units, rely on atomics to modify shared data structures. So far, the benefits of
these techniques have been shown experimentally but there is no theoretical model of
the performance of atomics on GPUs. Such a model would help to analyze algorithms,
characterize hardware, and drive scheduling decisions.

(2) What is the tradeoff between data transfer and cooperation on fast coherent in-
terconnects? Fast dedicated GPU interconnects, i.e., NVLink 2.0 [225], Infinity Fab-
ric [241], or Compute Express Link [284], offer higher bandwidth, lower latency, and
coherent access. However, they are still slower than CPU main memory access and do
not fully eliminate the data transfer bottleneck. We are only aware of work by Lutz et al.
[189] who explore how these interconnects can be used for more fine-grained cooperation
between CPUs and dedicated GPUs in the context of hash joins.

(3) How can databases leverage dedicated hardware for matrix operations? Recent
GPUs contain dedicated hardware to accelerate matrix operations of machine learning
workloads [30, 225]. These GPUs are promising processors to execute complex pipelines
that integrate traditional query processing with machine learning, as well as to leverage
machine learning for query optimization [3].

(4) What is faster on GPUs, vectorization or query compilation? State-of-the-art
processing models such as vectorization [38] and query compilation [208] have been
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implemented on GPUs [46, 87, 89, 121, 164, 244]. However, so far there is no systematic
comparison between these processing models on GPUs similar to the work by Kersten
et al. [151] and Gubner et al. [105] on CPUs. It is likely that the best processing model
depends on the type of GPU integration. Query compilation creates coarse-grained tasks
that are beneficial on dedicated GPUs. Vectorization supports efficient cooperation of
fine-grained tasks on integrated GPUs.

(5) How can we adapt the processing model and query plans to different processors?
Every relational query processor for heterogeneous CPU/GPU systems that we studied
makes two simplifying decisions. (a) It uses the same query processing model on CPUs
and GPUs. (b) It executes a physical query plan generated by a query optimizer that
targets CPUs. However, as we discussed in the previous question, the fastest query
processing model may depend on the processor. Furthermore, on the level of primitives,
a different query plan may be faster on the GPU [9]. A heterogeneous query processor
could use different processing models and query plans for coarse-grained tasks that run
on each processor [103].

2.9.3. Conclusion

The query processing systems studied in our survey show that heterogeneous query
processing can effectively leverage GPUs to improve query performance. However, our
survey reveals that the research community often focuses on dedicated GPUs, and treats
integrated GPUs as an afterthought. Since dedicated and integrated GPUs require
different performance optimizations, the insights generated for dedicated GPUs are not
always generalizable.

We also found that the implementation of relational heterogeneous query processors is
very CPU-centric. Specifically, the processing model on the GPU is typically determined
by the processing model chosen for the CPU. Further research is needed to identify which
processing model is the fastest on GPUs and how to combine different processing models
on CPUs and GPUs.

Fortunately, GPU vendors continue to innovate on the hardware capabilities of GPUs.
This innovation generates exciting research opportunities, especially in the context of
integrating machine learning with relational query processing.
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3
Operator variant tuning on

heterogeneous processors

3.1. Problem statement

In the previous chapter, we examined the architectural differences between CPUs and
GPUs, and discussed the implications of a heterogeneous system architecture, which
contains both CPU and GPU processors, on the design of a query processing system.
We noted that the different hardware architectures of CPUs and GPUs require us to
formulate programs in a processor-specific way to fully exploit their processing capa-
bilities. For example, we discussed in Section 2.3.4.3 that on CPUs, each processing
core should execute a single thread which works independently of the others, whereas
on GPUs, we typically have to run many thousands of threads which cooperate with
each other. Furthermore, low-level implementation details, such as the memory access
pattern, branched or branch-free execution, or loop unrolling, have a different effect on
CPUs and GPUs. It follows that we need to adapt the data processing code in a hetero-
geneous query processor to the specific processor it runs on. We call this problem the
operator variant selection problem on heterogeneous hardware, and examine it in detail
in this chapter.

A straightforward approach is to include dedicated implementations for each processor
type, i.e., one operator implementation for CPUs and another one for GPUs. This ap-
proach is taken by GDB [116], which, to our knowledge, was the first full relational query
processor for heterogeneous CPU/GPU systems. GDB includes an operator implemen-
tation written in CUDA [211] for the GPU and another one written in OpenMP [65]
for the CPU. The advantage of this approach is that each operator implementation can
be independently optimized for a specific processor architecture. However, the need to
develop and optimize dedicated implementations for multiple processors is also a major
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disadvantage, as it increases development costs. Both implementations are function-
ally equivalent, but they require developers to know the details of different hardware
architectures, and tuning takes time for each processor.

To reduce development costs, Heimel et al. [123] propose a design based on a single
hardware-oblivious operator implementation, which is written in OpenCL [300] and runs
on CPUs, GPUs, and other supported parallel processors. The OpenCL specification
defines an abstract programming model, which is translated by a vendor-provided driver
to a processor-specific binary, and allows developers to write scalable programs that
run on a variety of parallel processors (see also Section 2.3.4). However, OpenCL only
provides functional portability, but it does not ensure performance portability [272]. The
specification guarantees that an OpenCL program will run on any supported device [317],
but not necessarily at the best performance. Thus, hardware-oblivious operators written
in OpenCL do not solve the problem that the operator implementation of a heterogeneous
database has to be adapted to different processors, and optimized for each processor
individually.

In this chapter, we propose that a data processing system exploits runtime perfor-
mance feedback to automatically learn an operator implementation that is specifically
adapted to the processor it runs on. Previous work exploits runtime performance feed-
back to select between different operator implementations to react to changing data
characteristics during the execution of a query [258]. However, the diversity of hetero-
geneous processors makes this process much more challenging since the search space
of possible operator implementations is considerably larger. We also want the query
processing system to adapt its operator implementation to new parallel processor archi-
tectures, which are proposed from time to time, e.g., the Intel Xeon Phi [56] or the Cell
Broadband Engine [141], and so we do not necessarily know which implementations are
good candidates to choose from. Finally, as we will show in this chapter, GPUs are very
sensitive to implementation parameters and can suffer a large performance penalty if the
implementation is not carefully tuned to the specific GPU model.

3.2. Contributions

In this chapter, we experimentally motivate the operator variant selection on heteroge-
neous hardware, using selection and hash aggregation as two operator examples, and
propose two algorithms towards solving it. Specifically, we make the following contribu-
tions:
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(1) We show that we can generate a large number of implementations of the selection
operator from a few implementation parameters, and perform an extensive experi-
mental evaluation of these implementations on seven CPUs from AMD, IBM, and
Intel; five GPUs from AMD, Intel, and Nvidia; and an Intel Xeon Phi coprocessor.
Our evaluation illustrates the diversity of existing heterogeneous processor archi-
tectures with regard to the influence of implementation parameters on performance
(Section 3.3).

(2) Digging deeper, we examine the influence of different execution parameters on
GPU-accelerated hash aggregation on four NVIDIA and two AMD GPUs based
on six different microarchitectures. We find that the optimal execution parameters
are highly GPU-specific and that implementations optimized for a specific GPU are
up to 21× slower on other GPUs, which indicates that previously derived heuristics
for GPU-accelerated hash aggregation [149] cannot be generalized to other GPUs
(Section 3.4).

(3) Based on our analysis, we develop an algorithm to learn fast operator implementa-
tions at runtime. The algorithm is based on Micro Adaptivity [258] but extends it
with a search strategy to handle large search spaces. Our evaluation shows that it
can significantly improve the performance of the selected operator implementation
over a number of queries but that the absolute performance it achieves strongly
depends on random initial conditions (Section 3.6).

(4) We develop a second algorithm to address some of these short-comings. It is
based on a local search that follows a performance gradient in the search space,
and extends it with a mechanism to handle performance plateaus and runtime
variation. Crucially, it incorporates knowledge about the operator performance
characteristics to restrict and guide the search (Section 3.7).

The key insight of this chapter is that processors differ greatly in how sensitive they
are to deviations from optimal implementation parameters. On some of the processors
we evaluated, such as the Intel Xeon Phi 7210, only a small number of combinations
of implementation numbers result in fast operator implementations. Therefore, it is
crucial to exploit available information about the performance characteristics of a par-
ticular processor, in order to restrict the search space and guide the search, and to avoid
particularly bad operator implementations.
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3.3. The operator variant selection problem on
heterogeneous hardware

In this section, we experimentally motivate the operator variant selection problem on
modern heterogeneous processors. In particular, we show that we can derive thousands of
operator implementations from a small set of implementation parameters, which change
implementation details, but do not change the semantics of the operator. Throughout
this chapter, we use the term variant as a synonym for an operator implementation.
Concretely, an operator variant is an assignment of a set of implementation parameters
to specific values, which fully describes a concrete implementation of an operator.

We use a selection kernel as an example to illustrate how to construct operator variants.
The selection kernel scans an array of input values, evaluates a predicate on each value,
and constructs a bitmap which stores the result of the evaluation. Such a kernel is often
used as a building block of a complete selection operator in GPU databases [123].

We construct variants of this selection kernel in three steps. First, we formulate a
set of basic variants which specify the memory access pattern of the input array and
how threads cooperate to construct the result bitmap. Second, we modify each basic
variant by changing low-level implementation details, such as branch-free evaluation of
the selection predicate, or unrolling kernel loops. Third, we vary how to distribute the
workload on the threads running in parallel on the processor. In total, we construct
variants for the selection kernel based on six implementation parameters.

After describing how to construct operator variants, we measure their performance
on a diverse set of processors from different manufacturers, including seven CPUs, five
GPUs, and an Intel Xeon Phi coprocessor. Our evaluation shows that there is no single
variant which performs well on every processor. In fact, the fastest variant depends on
the processor type, the manufacturer, and even the processor microarchitecture. Fur-
thermore, we find that the implementation parameters influence performance in different
processor-specific ways and that some processors are more tolerant to the selection of
implementation parameters than others.

3.3.1. Basic selection kernel variants

We use six different basic variants for the selection kernel, which are illustrated schemat-
ically in Figure 3.1. These variants use different algorithms to produce the same result
bitmap for a given input. Specifically, they differ in how they access the input array and
how they cooperate to construct the result bitmaps.
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Figure 3.1.: Basic selection kernel variants.
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Figure 3.1a shows the simplest possible variant, which we call Sequential. Each
thread works on a continuous region of the input array, independently of the other
threads. The thread evaluates the predicate for a few consecutive values, creates the
resulting bitmap element in a register, and writes it out to the corresponding global
memory address. The memory access pattern of Sequential does not utilize GPU
hardware efficiently, because it does not provide opportunities to coalesce memory ac-
cesses from multiple threads to the same memory region. Instead, on GPUs, we want to
interleave the access pattern of neighboring threads, so that they evaluate the selection
predicate on neighboring input values [213, §9.2.1].

A straightforward interleaved variant, called GlobalAtomic, is shown in Figure 3.1b.
The threads in a work group create the result bitmap by directly setting the corre-
sponding bits in parallel, using atomic operations [154, §6.12.11]. In order to ensure
correctness, the work group first has to zero-initialize the result memory, after which it
has to synchronize the threads via a global memory barrier. LocalAtomic, shown in
Figure 3.1c, is a slightly modified version of the previous variant. Here, the threads con-
struct the bitmap in local memory. After synchronizing via a local memory barrier, the
work group then copies the result to its final position in global memory. A major disad-
vantage of GlobalAtomic and LocalAtomic is their reliance on atomic operations.
For predicates that are satisfied by a large percentage of the input data, these variants
suffer from severe thread contention, as all atomic operations on the same address are
serialized by the hardware [214, §4.1].

Figure 3.1d shows the Reduce variant, which does not rely on atomics. Each thread
evaluates the predicate for one value, creates a bitmap element with the corresponding
bit set, and writes it to local memory. The threads in a work group then cooperate
to create the result bitmap using a parallel reduction algorithm [130]. A drawback of
Reduce is its wastefulness with regard to local memory. Each thread only sets one bit,
but stores a full bitmap element in local memory. This resource consumption limits the
amount of threads that can run concurrently on the GPU.

The final two variants, Collect and Transpose, which are shown in Figure 3.1e
and Figure 3.1f, respectively, use local memory resources more efficiently. The first
part of the algorithm is the same for both variants. Similarly to Sequential, each
thread first evaluates the predicate for multiple tuples, creating a bitmap element in
local memory. However, due to the interleaved memory access, the bit pattern in these
elements will also be interleaved, forcing us to restore the correct bit order before writing
to global memory. Essentially, the intermediate bitmaps can be interpreted as a square
matrix which we need to transpose, and the variants differ in how this happens. Each
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thread of Collect builds one element of the result bitmap in a register by subsequently
collecting the required bits using bit masks and bit shifts. This algorithm scales linearly
with the number of bits per bitmap element and does not require memory barriers.
Transpose uses the threads of the work group to cooperatively transpose increasingly
larger tiles of the interleaved bitmap elements in local memory, again using bit masks
and bit shifts [16]. This algorithm scales logarithmically, but it requires an additional
memory barrier between each step.

3.3.2. Low-level implementation parameters

The algorithms described by the basic selection kernel variants in the previous section
can be further adapted by modifying low-level implementation details. Again, changing
these implementation details does not change the produced result. Concretely, we modify
the following three implementation details.

3.3.2.1. Result type

In Figure 3.1, we illustrated the basic variants for bitmap elements containing four bits.
In actuality, we create bitmaps at the granularity of 8, 16, 32, or 64 bits, using the
OpenCL types uchar, ushort, uint, and ulong [154, §6.1.1]. The size of the bitmap
elements determines the number of steps required to reduce the initial 1-bit bitmaps in
the Reduce variant, and to fix the interleaved bit order in the Collect and Transpose
variants.

3.3.2.2. Loop unrolling

We optionally remove for loops entirely by replicating the loop body the required num-
ber of times.

3.3.2.3. Branch-free evaluation

Instead of evaluating the predicate and setting the bit in the result bitmap using an if

statement, we can also set bits unconditionally using branch-free evaluation. On CPUs,
branch-free evaluation avoids costly branch mispredictions when the selectivity of the
predicate is neither very low nor very high [258].
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3.3.3. Workload distribution parameters

The abstract programming model of OpenCL requires developers to partition a prob-
lem into work groups, which are processed independently of each other on a dedicated
compute unit of the parallel processor (see Section 2.3.4.2). Within a work group, the
threads can cooperate to produce the result. Of the six basic selection kernel variants,
LocalAtomic, Reduce, Collect, and Transpose cooperatively construct the re-
sult bitmap in local memory, before writing it out to global memory. Moreover, on a
GPU, we have to schedule multiple work groups per compute unit to effectively hide
memory access latency. Thus, we can further construct additional variants by varying
the workload distribution using the following two parameters.

3.3.3.1. Work group size

The work group size is an OpenCL parameter that is specified when a kernel is launched [154,
§5.8]. It determines the number of work items in each work group, i.e., the number of
work items that can cooperate to solve a subproblem.

3.3.3.2. Elements per thread

To reduce the overhead for each thread, the variants are modified to produce additional
result bitmap elements by processing a range of input values sequentially. This parameter
indirectly determines the number of work groups per compute unit. Given a fixed input
size and work group size, the more elements are processed by a thread, the smaller the
number of work groups among which the input is partitioned.

To effectively distribute the work load on a parallel processor, there have to be at
least as many work groups as there are independent processing units. Beyond, the
ideal number of work groups is a processor-specific tradeoff. On Nvidia GPUs, more
and smaller work groups provide the GPU scheduler with more flexibility to hide the
memory access latency [213, §10.3]. In contrast, on the AMD Radeon HD 9650, larger
work loads provide the compiler more opportunities to fill VLIW instructions [6, §3.6.3].
On Intel CPUs, having fewer work groups reduces scheduling overheads [133, §2.9].

3.3.4. Variant universe

Based on the six base variants, the three low-level implementation parameters, and
the two workload partition parameters, we can generate close to six thousand different
variants of the selection operator. Not all combinations of implementation parameters
result in valid variants. For all basic kernel variants except Sequential, the number
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of work items must be a multiple of the number of bits in the result bitmap element.
GlobalAtomic and LocalAtomic always use branched evaluation, because the result
bitmap is zero-initialized at the beginning. Conversely, the Reduce variant always
evaluates the predicate branch-free because this operation can be combined with clearing
the other bits of the intermediate result bitmaps in local memory. GlobalAtomic and
LocalAtomic also do not unroll loops, and OpenCL atomic operations are generally
only defined on 32-bit integers, as well as on 64-bit longs on AMD CPUs.

The exact number of possible variants is device-specific. For example, the maximum
work group size can range from as low as 256 on AMD GPUs to as high as 8192 on
Intel CPUs and on the Intel Xeon Phi. Many OpenCL implementations also suggest a
minimal work group size. AMD and Nvidia suggest a multiple of 64 or 32 work items,
respectively, to fill warps on Nvidia GPUs [213, §10.3] and wavefronts on AMD GPUs [6,
§3.6.3]. Intel suggests a multiple of eight or 16 work items to enable auto-vectorization
on Intel CPUs [133, §2.8] or on the Intel Xeon Phi [132], respectively. However, this is
not a hard rule, as in some cases other resources than processing cores, e.g., the TLB
cache on GPUs, can constrain overall performance [149]. We therefore set the minimal
work group size to one on CPUs and to eight on GPUs and the Intel Xeon Phi.

Most importantly, we have to set the workload parameters in a way which parallelizes
the workload effectively on the available processing resources and does not leave compute
units idle. Note that we cannot always retrieve this information from the OpenCL run-
time in a straightforward manner. For example, on Nvidia GPUs and the AMD Radeon
HD 6950, compute units correspond to independent streaming multiprocessors (SMs) or
SIMD cores, respectively, and therefore the number of compute units provides a lower
bound to the number of work groups that should be launched. However, on the Intel
Iris 5100, the reported number of compute units correspond to execution units (EUs),
which are grouped into subslices and slices and which are not independent from each
other [139, §5.3]. On this processor, we should not derive the minimal number of work
groups from the number of compute units. On Intel CPUs and on the Intel Xeon Phi,
which support multiple hardware threads per physical core, the number of compute units
corresponds to the number of logical cores.

In Table 3.1, we report the number of variants constructed on each processor, depend-
ing on the number of processing resources, the maximal work group size, and whether
the OpenCL runtime supports 64-bit atomics. (Note that the number of variants differs
from our previously published work [268] because we exclude variants which do not ef-
fectively parallelize the workload over the available processing cores, as described in the
previous paragraph.)
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Table 3.1.: Number of constructed variants based on properties of the processor and the
OpenCL runtime.

Processor 64-bit
atomics

Compute
units

Independent
cores/SMs/slices

Maximum
work group size Variants

AMD Opteron 23561 ✓ 8 8 1024 4974
AMD Opteron 6128 HE1 ✓ 16 16 1024 4806
IBM 8231-E2B 48 12 1024 4980
Intel Core i7-870 8 4 8192 5884
Intel Xeon E5620 8 4 8192 5880
Intel Xeon E5-2650 v21 32 16 8192 5414
Intel Core i7-4900MQ 8 4 8192 5880
AMD Radeon HD 6950 22 22 256 3104
Intel Iris 5100 40 2 512 3750
Nvidia GeForce GTX 460 7 7 1024 4160
Nvidia Quadro K2100M 3 3 1024 4280
Nvidia Tesla K40M 15 15 1024 3992
Intel Xeon Phi 7120 240 60 8192 3374

1 Two-socket system.

3.3.5. Performance analysis on heterogeneous processors

In the following, we measure the performance of the selection operator variants con-
structed in the previous section on a diverse set of processors, including seven CPUs
from AMD, IBM, and Intel; five GPUs from AMD, Intel, and Nvidia; as well as an Intel
Xeon Phi coprocessor. Our goal is to determine the processor-specific influence of the
six implementation parameters on the performance of the selection operator.

Using a custom code generator, we generate an OpenCL kernel for every valid com-
bination of the six implementation parameters from the variant universe. The OpenCL
kernel computes a simple less than predicate with a fixed selectivity, which we vary from
0 to 1 in steps of 0.1. We evaluate each variant on an array of 32 million random integers,
i.e., the input size is 128 MB, which exceeds the largest cache on every processor. For
each selectivity, we run each kernel ten times and compute the median run time.

The heat maps in Figure 3.2 summarize the results. The figure is arranged in a grid
with four dimensions: the processor (columns in the plot grid), the basic kernel variant
(rows in the plot grid), a combination of low-level implementation parameters (rows in
individual heat map plots), and the predicate selectivity (columns in individual heat
map plots). Each heat map tile shows the performance of the fastest variant given the
four dimensions, i.e., the variant with optimal workload parameters. For each processor
and selectivity, we also identify the fastest variant, and indicate it with the symbol .
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Figure 3.2.: Selection operator performance on different processors (CPUs). The labels
on the y axis indicate the bit size of the result type and whether the variant
is branch-free and/or unrolled. indicates the fastest variant for a given
selectivity. indicates a variant that is at most 10% slower than the fastest.
(Figure continues on next page.)
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Figure 3.2.: Selection operator performance on different processors (continued from pre-
vious page, GPUs and Intel Xeon Phi).
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In addition, we indicate variants that are at most 10% slower than the fastest with the
symbol . At the bottom of every processor column, we show the range of the kernel
run times in milliseconds.

Note that not all combinations of basic kernel variant and low-level implementation
parameters create valid variants, as we described in Section 3.3.4. Furthermore, when we
verified the output of the selection kernel, we noticed that the 64-bit unrolled Transpose
kernel produced the wrong results on the IBM 8231-E2B CPU.

3.3.6. Processor diversity

The heat maps in Figure 3.2 clearly show the diversity of the tested processors with
regard to the performance of each variant. How well a variant performs compared to the
others depends on the processor type, the manufacturer, and the microarchitecture.

3.3.6.1. Differences between CPUs, GPUs, and the Xeon Phi

As expected, a simple Sequential kernel is the fastest variant on CPUs. Furthermore,
if the selectivity of the predicate is not either very low or very high, a branch-free kernel
outperforms a branched kernel, which is consistent with previous research [48, 258].
Conversely, on GPUs and on the Xeon Phi, a more complex kernel, in which multiple
threads cooperate to produce the result, is faster, i.e., Collect or Transpose.

3.3.6.2. Differences between processor manufacturers

On GPUs, a Collect kernel is the fastest variant on the AMD Radeon HD 6950 GPU,
whereas a Transpose kernel is fastest on the Intel Iris 5100, the Nvidia GPUs, and
also the Intel Xeon Phi. Also note that on the Iris 5100, the LocalAtomic kernel is at
most 10% slower than the fastest variant if the selectivity is below 0.7. On other GPUs,
and on the Xeon Phi, the LocalAtomic kernels are much slower.

On CPUs, it is noteworthy that GlobalAtomic and LocalAtomic show the same
performance on AMD GPUs. Conversely, on IBM and Intel CPUs, LocalAtomic is
faster than GlobalAtomic as the selectivity approaches 1, even though CPUs do not
have dedicated local memory.

3.3.6.3. Differences between microarchitectures from the same
manufacturer

On the Nvidia GeForce GTX 460, which is based on the Fermi microarchitecture, a
Transpose kernel with a 32-bit result size is the fastest variant, whereas a kernel
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with a 16-bit results size is the fastest on the two Nvidia GPUs based on the Kepler
microarchitecture. Furthermore, the heat maps of the Sequential kernel are noticeably
different on both Nvidia microarchitectures, indicating that the low-level implementation
parameters influence the performance of this kernel in different microarchitecture-specific
ways. Similarly, the heat maps of the Collect kernel differ between the Nehalem, Ivy
Bridge, and Haswell CPUs from Intel. Also note that on Kepler GPUs, LocalAtomic
is slower than GlobalAtomic as the selectivity of the kernel approaches 1.

3.3.7. Influence of workload parameters

So far, we have analyzed the performance of different basic kernel variants and the influ-
ence of low-level implementation parameters. In the following we analyze the influence
of workload parameters on the performance of variants. Figure 3.3 shows how the work
group size and the number of elements per thread affect the runtime of the fastest variant
from Figure 3.2 on page 79 at selectivity 0.5. The heat maps are irregular because some
combinations do not represent valid variants, i.e., the number of work groups is smaller
than the number of independent cores. Additionally, for kernels other than Sequential,
the number of bits in the result type determines the minimal work group size.

Again, the heat maps show the diversity of the processors with regard to the influence
of the workload parameters on variant performance. On Intel CPUs, almost all variants
are at most 10% slower than the fastest. The main exception is a diagonal line at the top-
right corner which represents variants which do not utilize the available hyperthreads.
Conversely, the AMD Opteron 2356 achieves the best performance only if the number of
work groups precisely matches the number of hyperthreads. Deviating from the diagonal
line results in a significant performance penalty. Similarly, on the AMD Opteron 6128
HE, the Intel Iris 5100, the Nvidia Tesla K40M, and the Intel Xeon Phi 7120, which
use a Collect or Transpose kernel, only a small number of combinations of workload
parameters result in optimal performance.

We can also see differences in the behavior of GPUs with regard to the number of
work groups. On the AMD Radeon HD 6950 and the Nvidia GPUs, performance is
maximized if the number of elements per thread is small and the number of work groups
is correspondingly large. Having many active work groups is crucial to let the GPU
scheduler hide the memory access latency [213, §10.3]. Conversely, on the Intel Iris
5100, performance is maximized if there are just four work groups, which correspond to
the number of execution subslices [139, §5.3]. Note that this information is not available
through the OpenCL runtime. If we restrict the number of work groups to the number
of compute units, i.e., use fewer elements per thread, performance is significantly worse.
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(b) Collect 8-bit BF U
on AMD Opteron 6128 HE
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(c) Sequential 8-bit BF
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(d) Sequential 64-bit BF U
on Intel Core i7-870
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(e) Sequential 64-bit BF U
on Intel Xeon E5620
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(f) Sequential 64-bit BF U
on Intel Xeon E5-2650 v2
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(g) Sequential 64-bit BF U
on Intel Core i7-4900MQ

Figure 3.3.: Influence of workload parameters (CPUs). The heatmaps show the per-
formance of the selected basic kernel variant and low-level implementation
parameters at selectivity 0.5. indicates the fastest variant. indicates a
variant that is at most 10% slower than the fastest. Note the different scales
for the work group size on the x axis. (Figure continues on next page.)
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(h) Collect 8-bit
on AMD Radeon HD 6950
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(i) Transpose 64-bit BF U
on Intel Iris 5100
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(j) Transpose 32-bit U
on Nvidia GeForce GTX 460
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(k) Transpose 16-bit BF
on Nvidia Quadro K2100M
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(l) Transpose 16-bit
on Nvidia Tesla K40M
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(m) Transpose 64-bit
on Intel Xeon Phi 7120

Figure 3.3.: Influence of workload parameters (continued from previous page, GPUs and
Intel Xeon Phi).

3.3.8. Number of competitive variants

In Figure 3.2 and Figure 3.3 we indicate competitive variants with the symbol , i.e.,
those that are at most 10% slower than the fastest. 10% is an arbitrary threshold but it
serves to highlight the importance of some implementation parameters over others and
how they influence variant runtime.

For example, on Intel CPUs, if the selectivity is neither very low nor very high, it
is important to select a branch-free Sequential kernel. The size of the bitmap result
type and loop unrolling have a smaller, but not insignificant influence. Furthermore, we
can choose a wide range of workload parameters, as long as we utilize all hyperthreads.
Interestingly, on the Intel i7-870, the Xeon E5620, and the Core i7-4900MQ, Transpose
kernels are also competitive. In these cases, the choice of the bitmap result type has a
stronger influence on variant performance than loop unrolling and branch-free execution.
The Intel OpenCL compiler is able to vectorize Transpose kernels whereas it does not
vectorize Sequential kernels.

On GPUs, most Transpose kernels are competitive, and on the Intel Iris 5100, the
Nvidia Quadro K2100M and the Nvidia Tesla K40M, any combination of low-level im-
plementation parameters results in a competitive Transpose variant. Collect is also
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Table 3.2.: Distribution of the variant runtime on the tested processors at selectivity
0.5. The columns show the deciles and the maximum of the normalized
runtime, i.e., the absolute runtime divided by the minimal runtime for each
processor and selectivity. Deciles which are within 10% of the fastest variant
are highlighted in bold.

Processor 10% 20% 30% 40% 50% 60% 70% 80% 90% Max
AMD Opteron 2356 1.26 1.30 1.40 1.62 2.1 2.6 3.7 5.7 9.1 41
AMD Opteron 6128 HE 1.47 1.54 1.55 1.56 1.70 2.1 3.0 4.6 7.4 33
IBM 8231-E2B 1.68 2.2 2.7 3.1 3.6 4.2 5.0 6.7 11 51
Intel Core i7-870 1.02 1.10 1.30 1.79 2.1 2.3 2.4 3.3 6.0 33
Intel Xeon E5620 1.01 1.07 1.21 1.68 2.0 2.1 2.4 3.1 7.8 32
Intel Xeon E5-2650 v2 1.15 1.40 1.60 2.6 3.1 3.3 3.9 6.0 9.2 66
Intel Core i7-4900MQ 1.02 1.06 1.33 1.64 2.4 3.2 3.6 5.1 6.6 23
AMD Radeon HD 6950 1.07 1.19 1.62 2.5 3.5 4.8 6.9 9.4 13 83
Intel Iris 5100 1.10 1.13 1.17 1.26 1.75 2.2 2.7 3.5 8.2 73
Nvidia GeForce GTX 460 1.19 1.46 1.95 3.2 4.3 7.3 9.9 16 22 219
Nvidia Quadro K2100M 1.07 1.20 1.55 2.3 3.6 6.3 11 14 20 320
Nvidia Tesla K40M 1.17 1.33 1.67 2.5 3.3 4.9 9.1 10 14 71
Intel Xeon Phi 7120 1.58 1.97 2.5 3.3 4.4 5.8 7.2 8.9 13 147

a fast kernel on GPUs, but the choice of implementation parameters is more important.
Furthermore, the range of fast workload parameters is smaller than on Intel CPUs.

Finally, the Intel Xeon Phi has very few competitive variants. The fastest variant is
a 64-bit Transpose kernel. Both low-level implementation parameters and work-load
parameters strongly influence variant performance.

Table 3.2 shows a more complete view of the variant runtime distributions on the
tested processors. In it, we show the deciles of the distributions as well as the runtime
of the slowest variant in the column Max. In order to compare the distributions across
processors with different performance characteristics, we normalize the variant runtime
by dividing it by the runtime of the fastest variant for each processor at selectivity 0.5.
(Note that runtime distribution differs from our previously published work [268] because
we exclude variants which do not effectively parallelize the workload over the available
processing cores, as described in Section 3.3.4.)

The table shows how some processors have many competitive variants whereas others
have few. For example, on the Intel Core i7-870, the Xeon E5620, and the Core i7-
4900MQ, at least 20% of the variants are competitive, and on the AMD Radeon HD
6950, the Intel Iris 5100, and the Nvidia Quadro K2100M, at least 10% of the variants
are competitive. We can conclude that on these processors it is comparatively easy to
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Table 3.3.: Implementation parameters of the fastest variants for each selectivity
(CPUs). Sel = selectivity, RT = result bitmap bit size, BF = branch-free
evaluation, U = unrolled, E/T = elements per thread, WGS = work group
size, WG = number of work groups. The most common choice for each pa-
rameter is shown in bold; ties are shown in italics. (Table continues on next
page.)

(a) AMD Opteron 2356

Sel Variant RT BF U E/T WGS WG [ms]

0 Sequential 64 BF 256 32 64 20.6
0.1 Sequential 64 BF U 512 64 16 19.5
0.2 Sequential 8 BF 128 0 – 19.5
0.3 Sequential 8 BF 1024 256 16 19.5
0.4 Transpose 64 BF U 128 128 32 21.2
0.5 Sequential 64 BF U 256 256 8 17.5
0.6 Sequential 8 BF 1024 512 8 18.1
0.7 Sequential 8 BF U 1024 512 8 15.6
0.8 Sequential 8 BF U 1024 256 16 16.9
0.9 Sequential 8 BF 256 1024 16 15.7

1 Sequential 8 512 1024 8 16.2

(b) AMD Opteron 6128 HE

Sel Variant RT BF U E/T WGS WG [ms]

0 Sequential 8 2 128 16384 14.4
0.1 Sequential 64 U 1 32 16384 14.5
0.2 Transpose 16 BF U 1 128 16384 14.7
0.3 Transpose 16 BF U 1 128 16384 13.8
0.4 Sequential 32 BF U 1 64 16384 12.7
0.5 Collect 8 BF U 1 512 8192 12.2
0.6 Transpose 32 BF U 1 64 16384 14.0
0.7 Collect 8 BF U 1 256 16384 14.4
0.8 Sequential 8 BF 1 256 16384 13.6
0.9 Collect 8 BF U 1 256 16384 13.6

1 Collect 16 BF U 1 256 8192 12.2

(c) IBM 8231-E2B

Sel Variant RT BF U E/T WGS WG [ms]

0 Sequential 16 BF 4 64 8192 3.2
0.1 Sequential 32 BF 128 4 2048 3.7
0.2 Sequential 8 BF 1024 16 256 4.0
0.3 Sequential 32 BF U 128 16 512 3.9
0.4 Sequential 16 BF 8 512 512 3.7
0.5 Sequential 8 BF 64 256 256 3.9
0.6 Sequential 8 BF U 128 16 2048 3.8
0.7 Sequential 32 BF 512 2 1024 3.8
0.8 Sequential 32 BF U 32 128 256 3.5
0.9 Sequential 16 U 512 2 2048 3.3

1 Sequential 16 U 2 1024 1024 2.7

(d) Intel Core i7-870

Sel Variant RT BF U E/T WGS WG [ms]

0 Sequential 32 BF 128 2048 4 8.7
0.1 Sequential 32 BF 256 1024 4 8.9
0.2 Sequential 32 BF 128 2 4096 9.0
0.3 Sequential 32 BF 32 8192 4 8.9
0.4 Sequential 64 BF U 128 1024 4 8.8
0.5 Sequential 64 BF U 256 1 2048 8.9
0.6 Sequential 32 BF 1024 256 4 8.8
0.7 Sequential 64 BF U 512 256 4 8.8
0.8 Sequential 32 BF 1 0 – 8.9
0.9 Sequential 64 U 512 128 8 8.9

1 Sequential 64 U 1024 128 4 8.5

(e) Intel Xeon E5620

Sel Variant RT BF U E/T WGS WG [ms]

0 GlobalAtomic 32 8 128 32768 10.7
0.1 Sequential 64 BF U 8 8192 8 10.8
0.2 Sequential 64 BF U 32 1 16384 10.8
0.3 Sequential 64 BF U 8 2 32768 10.8
0.4 Sequential 32 BF 1 256 4096 10.8
0.5 Sequential 64 BF U 32 2 8192 10.8
0.6 Sequential 64 BF U 4 32 4096 10.8
0.7 Sequential 64 BF U 16 1 32768 10.8
0.8 Sequential 32 BF 1024 256 4 10.5
0.9 Sequential 64 BF U 128 1 4096 10.7

1 Sequential 64 U 64 2048 4 10.7

(f) Intel Xeon E5-2650 v2

Sel Variant RT BF U E/T WGS WG [ms]

0 Sequential 8 128 4 8192 2.3
0.1 Transpose 16 64 16 2048 2.3
0.2 Sequential 64 BF U 1 64 8192 2.1
0.3 Sequential 8 BF 1 512 8192 1.94
0.4 Sequential 8 BF 1 32 131072 1.80
0.5 Sequential 64 BF U 2 8192 32 1.82
0.6 Sequential 64 BF U 32 4 4096 1.93
0.7 Sequential 8 BF 1 256 16384 1.97
0.8 Sequential 64 BF U 4 8 16384 2.1
0.9 Transpose 16 64 16 2048 2.1

1 Sequential 32 256 1 4096 1.78

(g) Intel Core i7-4900MQ

Sel Variant RT BF U E/T WGS WG [ms]

0 Sequential 64 U 32 2048 8 6.3
0.1 Sequential 64 BF U 1 128 4096 6.4
0.2 Sequential 64 BF U 1 64 8192 6.4
0.3 Sequential 64 BF U 1 64 8192 6.4
0.4 Sequential 8 BF U 8 32 16384 6.4
0.5 Sequential 64 BF U 1 0 – 6.4
0.6 Sequential 8 BF 8 0 – 6.4
0.7 Sequential 64 BF U 1 0 – 6.4
0.8 Sequential 64 BF U 1 64 8192 6.4
0.9 Sequential 64 BF U 1 32 16384 6.4

1 Sequential 64 U 1 0 – 6.3
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Table 3.3.: Implementation parameters of the fastest variants for each selectivity (con-
tinued from previous page, GPUs and Xeon Phi).

(h) AMD Radeon HD 6950

Sel Variant RT BF U E/T WGS WG [ms]

0 Collect 8 U 1 128 32768 1.09
0.1 Collect 8 1 128 32768 1.09
0.2 Collect 8 1 128 32768 1.09
0.3 Collect 8 U 1 128 32768 1.09
0.4 Collect 8 1 128 32768 1.09
0.5 Collect 8 1 128 32768 1.09
0.6 Collect 8 U 1 128 32768 1.09
0.7 Collect 8 1 128 32768 1.09
0.8 Collect 8 1 128 32768 1.09
0.9 Collect 8 1 128 32768 1.09

1 Collect 8 U 1 128 32768 1.09

(i) Intel Iris 5100

Sel Variant RT BF U E/T WGS WG [ms]

0 Transpose 64 BF U 1024 128 4 6.3
0.1 Transpose 64 BF U 1024 128 4 6.2
0.2 Transpose 64 BF U 1024 128 4 6.2
0.3 Transpose 64 BF U 1024 128 4 6.2
0.4 Transpose 64 BF U 1024 128 4 6.2
0.5 Transpose 64 BF U 1024 64 8 6.2
0.6 Transpose 64 BF U 1024 128 4 6.2
0.7 Transpose 64 BF U 1024 128 4 6.2
0.8 Transpose 64 BF U 1024 128 4 6.2
0.9 Transpose 64 BF 1024 128 4 6.3

1 Transpose 64 BF U 1024 128 4 6.2

(j) Nvidia GeForce GTX 460

Sel Variant RT BF U E/T WGS WG [ms]

0 Transpose 32 U 1 256 4096 1.41
0.1 Transpose 32 U 1 256 4096 1.41
0.2 Transpose 32 U 1 256 4096 1.41
0.3 Transpose 32 U 1 256 4096 1.41
0.4 Transpose 32 U 1 256 4096 1.41
0.5 Transpose 32 U 1 256 4096 1.41
0.6 Transpose 32 U 1 256 4096 1.41
0.7 Transpose 32 U 1 256 4096 1.41
0.8 Transpose 32 U 1 256 4096 1.41
0.9 Transpose 32 U 1 256 4096 1.41

1 Transpose 32 U 1 256 4096 1.41

(k) Nvidia Quadro K2100M

Sel Variant RT BF U E/T WGS WG [ms]

0 Transpose 16 2 128 8192 3.5
0.1 Transpose 16 BF U 4 128 4096 3.5
0.2 Transpose 16 BF 1 128 16384 3.5
0.3 Transpose 16 BF U 2 128 8192 3.5
0.4 Transpose 16 BF 2 128 8192 3.5
0.5 Transpose 16 BF 2 128 8192 3.5
0.6 Transpose 16 2 128 8192 3.5
0.7 Transpose 16 BF 2 128 8192 3.5
0.8 Transpose 16 BF U 2 128 8192 3.5
0.9 Transpose 16 BF U 4 128 4096 3.5

1 Transpose 16 BF U 2 128 8192 3.5

(l) Nvidia Tesla K40M

Sel Variant RT BF U E/T WGS WG [ms]

0 Transpose 16 1 128 16384 0.72
0.1 Transpose 16 1 128 16384 0.72
0.2 Transpose 16 U 1 128 16384 0.72
0.3 Transpose 16 U 1 128 16384 0.72
0.4 Transpose 16 1 128 16384 0.72
0.5 Transpose 16 1 128 16384 0.72
0.6 Transpose 16 1 128 16384 0.72
0.7 Transpose 16 U 1 128 16384 0.72
0.8 Transpose 16 1 128 16384 0.72
0.9 Transpose 16 1 128 16384 0.72

1 Transpose 16 U 1 128 16384 0.72

(m) Intel Xeon Phi 7120

Sel Variant RT BF U E/T WGS WG [ms]

0 Transpose 64 1 64 8192 1.32
0.1 Transpose 64 1 64 8192 1.32
0.2 Transpose 64 1 64 8192 1.33
0.3 Transpose 64 1 64 8192 1.34
0.4 Transpose 64 1 64 8192 1.32
0.5 Transpose 64 1 64 8192 1.32
0.6 Transpose 64 1 64 8192 1.34
0.7 Transpose 64 1 64 8192 1.32
0.8 Transpose 64 1 64 8192 1.32
0.9 Transpose 64 1 64 8192 1.30

1 Transpose 64 1 64 8192 1.32

select a fast variant, whereas on other processors, e.g., the Intel Xeon Phi, the choice is
more difficult. Moreover, the table also shows that on every processors there is a large
jump in the variant runtime when comparing the 90% decile to the slowest variant, from
factor 3.5× on the Intel Core i7-4900MQ to 16× on the Nvidia Quadro K2100M. This
large factor indicates that there are a few variants which are really slow and which we
should avoid at all costs.

Nevertheless, on every processors, we can find certain implementation parameter
choices that consistently outperform other choices. In Table 3.3, we show the imple-
mentation parameters of the fastest variant at every selectivity value. The results on
GPUs and on the Intel Xeon Phi are particularly stable. On the Nvidia GeForce GTX
460 and the Intel Xeon Phi, a single combination of implementation parameters is the
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fastest variant across the range of tested selectivities. On the AMD Radeon HD 9650
and the Nvidia Tesla K40M, there is a slight variation with regard to the loop unrolling
parameter. Furthermore, on the Intel Iris 5100 and the Nvidia Quadro K2100M, there is
a slight variation with regard to the number of elements per threads and the work group
size, however the range of selected workload parameters is small. Because of this sta-
bility across the entire selectivity range, we believe that these parameter configurations
constitute a performance sweet spot.

3.3.9. Summary

Even for a simple selection kernel, and a small number of implementation parameters,
we can generate thousands of operator variants. No single variant performs well on every
processor. In fact, the fastest variant depends on the processor type, e.g., CPU or GPU,
the manufacturer, and the concrete processor microarchitecture. The processors also
differ with regard to the number of competitive variants, i.e., those which are at most
10% slower than the fastest. On some processors, e.g. the Intel Core i7-4900MQ or the
Nvidia Quadro K2100M, many variants are competitive. On other processors, e.g., the
Intel Xeon Phi, only a few specific combinations of implementation parameters result in
a fast variant.

3.4. Performance analysis of hash aggregation on GPUs

In this section, we continue our investigation of the operator variant selection problem
on heterogeneous hardware. However, in contrast to the previous section, in which we
evaluated a diverse range of processors such as CPUs and GPUs, we now focus on a single
processor type, i.e., GPUs, and examine the influence of the GPU microarchitecture on
variant performance across different GPU vendors and models.

We conduct our analysis using a hash aggregation operator as an example of a stateful
data processing primitive which can be effectively accelerated on GPUs [149, 201]. Hash
aggregation is commonly used to implement the final aggregation in OLAP queries, to
group the results of subqueries, or to eliminate duplicates. The performance of paral-
lelized hash aggregation is mainly determined by the efficient use of processor caches [206]
and by the amount of contention caused when multiple threads access a single hash ta-
ble [58]. Both factors are directly related to the number of groups. Consequently,
multiple parallelization strategies have been proposed that maximize cache efficiency
and minimize the effects of contention depending on the group cardinality [58, 149, 206,
342]. Furthermore, as we discuss in Section 2.3.4, the performance of GPUs kernels is
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strongly influenced by their thread configuration, i.e., the work group size and the num-
ber of work groups per compute unit (CU). We refer to the parallelization strategy and
the thread configuration as the execution parameters of the hash aggregation operator.

We first describe the implementation of a GPU-based hash aggregation operator and
three parallelization strategies. Afterwards, we evaluate the performance of these par-
allelization strategies and the influence of different thread configurations on six GPUs
based on different microarchitectures. Specifically, we look at four Nvidia GPUs based
on the Kepler, Maxwell, Pascal, and Volta microarchitectures, as well as two AMD
GPUs based on the 2nd and 3rd generation Graphics Core Next (GCN) microarchitec-
tures. Our main finding is that the optimal execution parameters strongly depend on
the executing GPU and that heuristics derived from the study of a single GPU cannot
be generalized to other GPUs. Furthermore, we find that for a given parallelization
strategy, the thread configuration search space has a single local minimum if we account
for runtime variation.

3.4.1. GPU-accelerated hash aggregation

Our operator implementation is based on the scheme described by Karnagel et al. [149]
with a few modifications to adapt it to GPUs by different manufacturers. We use the
following SQL query as an example to describe the implementation in detail:

SELECT g, sum((a− b)2) / count (*) FROM R GROUP BY g;

The query contains arithmetic operations both inside an aggregation function, i.e.,
sum((a− b)2), as well as outside of the aggregation, i.e., it divides the result of sum

by count.

3.4.1.1. Preliminaries

We assume that the group cardinality |g| is known so that we can size a hash table in
advance and do not have to resize it during aggregation. Note that group cardinalities
for arbitrary column combinations can be estimated with high accuracy and low over-
head [84]. Furthermore, we assume that the hash table fits into GPU device memory.
Current dedicated GPUs support up to 80 GB of device memory [218] which allows for
very large group cardinalities. In contrast, the input table R is stored in main memory
and does not necessarily fit into the device memory of a dedicated GPU. Integrated
GPUs can access the input table directly in main memory, but dedicated GPUs require
a data transfer of the input over a system bus, such as PCIe or NVLink.
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We use multiply/shift [160] as the hash function and linear probing as the hashing
scheme. These parameters achieve the highest throughput in an aggregation scenario,
which consists only of insertions and successful lookups, if the load factor is below
90% [262]. Given the group cardinality |g|, and a desired load factor, an open addressing
scheme such as linear probing also allows us to determine the exact size of the hash table
at the beginning of the aggregation.

3.4.1.2. Operator execution stages

The hash aggregation operator consists of multiple stages which are centered around
three GPU kernels. In order to run the same code on AMD and Nvidia GPUs, we
implement our kernels in OpenCL [300].

The operator first allocates sufficient memory on the GPU for the hash table and calls
the Initialize kernel. This kernel marks every hash bucket as empty and stores an
initial value for each aggregation function, e.g., zero for sum and count.

Next, the operator processes the input in a block-wise fashion and calls the Aggre-
gate kernel for each block. This kernel determines the hash bucket, performs com-
putations inside aggregation functions, i.e., (a − b)2 in our example, and updates all
aggregates. It also tracks the number of non-empty hash buckets. We implement a
software-managed staged pipeline (see Section 2.7.2.1) to explicitly overlap computation
and data transfer, instead of relying on hardware-managed zero-copy access as in pre-
vious work [149]. This approach allows us to measure the raw execution speed of the
Aggregate kernel.

Once the input has been processed, the operator allocates sufficient memory to store
the final result based on the number of non-empty hash buckets determined by the
Aggregate kernel. It then calls the Finalize kernel which iterates over the hash
table, performs the computations outside of the aggregation functions, i.e., dividing sum

by count, and materializes the result.

3.4.2. Parallelization strategies

The Aggregate kernel implements one of three parallelization strategies, which are
illustrated schematically in Figure 3.4. These strategies have been shown to achieve
high throughput on GPUs [149]. Two strategies, i.e., Shared and Independent, are
also commonly used on multi-core CPUs [58, 342]. WorkGroupLocal is specifically
optimized to use fast local memory found on GPUs [149].
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Figure 3.4.: Parallelization strategies.

In the Shared strategy, shown in Figure 3.4a, every thread aggregates into a single,
shared hash table, which is placed in global GPU memory. Concurrent updates to the
same hash bucket are resolved with atomic access primitives. For large group cardi-
nalities and a uniform distribution of group values, contention is negligible because the
chance of two threads accessing the same hash table bucket is small.

In the Independent strategy, shown in Figure 3.4b, each thread first aggregates into
a thread-private hash table, which is also placed in global memory. Because each thread
accesses its private hash table exclusively, there is no contention and no need to use
atomics. Once an input block has been processed, the private tables are merged into a
global table. Even though Independent still utilizes atomics to access the global hash
table, the number of accesses is reduced by the ratio of the number of groups in the hash
table and the number of tuples in the input block. However, because a GPU executes
many threads, this strategy creates many hash table duplicates which have to fit into the
L2 cache to minimize memory access latency. Therefore, this strategy is only feasible
for very small group cardinalities.

In the WorkGroupLocal strategy, shown in Figure 3.4c, the threads of a work group
cooperatively aggregate into a hash table that is placed in fast local memory. Concurrent
accesses to this private hash table are resolved using atomic access primitives. Compared
to Shared, contention is reduced because the accesses are distributed to multiple work
group tables instead of a single global table. The number of work group tables, and
the number of threads which try to access it concurrently, is determined by the thread
configuration, i.e., the number of work groups per compute unit and work group size.
Once a block has been fully processed, the intermediate result is merged into a table
stored in global GPU memory. Note that the local memory region is relatively small,
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typically between 32 and 96 kB. Therefore, we can use this strategy only for small to
medium group cardinalities.

3.4.3. Performance analysis on GPUs

In the following, we examine how hardware differences influence the performance of hash
aggregation on GPUs. To this end, we perform five experiments on six different GPUs
from AMD and Nvidia. (1) We evaluate the influence of the parallelization strategy
and (2) the thread configuration on the performance of the Aggregate kernel. (3) We
evaluate the performance penalty when executing an Aggregate kernel optimized for
a specific GPU on other GPUs. (4) We analyze the shape of the thread configuration
search spaces, i.e., we test if they have a single local minimum. (5) We analyze the
degree of runtime variation and the influence of outliers on different GPUs.

In our evaluation, we focus on the effect of contention and cache efficiency on hash
aggregation performance. Therefore, we use the following query with a single aggregate
and no additional computation:

SELECT g, sum(v) FROM R GROUP BY g;

We vary the group cardinality |g| by powers of two between 1 and 228. The other
evaluation parameters are as follows.

Execution parameters. For each group cardinality, we execute the three paral-
lelization strategies described in Section 3.4.2. We vary the number of work groups per
compute unit in powers of two, from 1 to 1024. Similarly, we vary the work group size
in powers of two, from 1 to the maximum work group size, i.e., 256 on AMD GPUs
and 1024 on Nvidia GPUs. In total, we evaluate up to 363 different combinations for
each group cardinality. Depending on the group cardinality, some combinations are not
possible because they exceed resource limitations.

GPUs. We run our experiments on the AMD A10-7850K (based on the 2nd gener-
ation GCN microarchitecture), the Radeon R9 Fury (GCN 3rd Gen.), the Nvidia Tesla
K40m (Kepler), the GeForce GTX 980 (Maxwell), the GeForce GTX 1080 (Pascal), and
the Tesla V100 (Volta). The A10-7850K is integrated with the host CPU. The Tesla
V100 is connected over NVLink 2.0 and the others over PCIe 3.0. We list the memory
configuration and additional properties of these GPUs in Table 3.4.

Input data. The input consists of two 32-bit integer values in columnar format.
Each column is split into blocks of 16 MB. We process 32 blocks, so that the total
input size is 1 GB. However, our analysis is fundamentally independent of the input
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Table 3.4.: GPU properties.

GPU Architecture Integration CUs Global
memory

Local
memory

L2
cache

AMD A10-7850K GCN 2nd Gen. on die 8 1.5 GB 32 kB 512 kB
AMD Radeon R9 Fury GCN 3rd Gen. PCIe 3.0 56 4 GB 32 kB 2 MB
Nvidia Tesla K40m Kepler PCIe 3.0 15 11.2 GB 48 kB 1.5 MB
Nvidia GeForce GTX 980 Maxwell PCIe 3.0 16 3.9 GB 96 kB 2 MB
Nvidia GeForce GTX 1080 Pascal PCIe 3.0 20 7.9 GB 96 kB 2 MB
Nvidia Tesla V100 Volta NVLink 2.0 80 15.8 GB 96 kB 6 MB

size because we execute the Aggregate kernel on individual blocks and overlap kernel
execution with data transfer. The group values are randomly generated from a uniform
distribution.

Measurement. We measure the time to process a block with the Aggregate
kernel using OpenCL profiling. We treat the input of 1 GB as a single sample consisting
of 32 observations and compute the mean runtime per block. Some GPUs exhibit a
high degree of runtime variation. Therefore, to verify our measurements, we collect
three samples consisting of 32 observations each. Unless otherwise stated, we report
the results of the first sample, which indicates that there are no differences between the
samples. We only measure the Aggregate kernel because the Initialize and Finalize
kernels are fixed costs that only depend on the hash table size and not on the input size.

3.4.4. Influence of the parallelization strategy

In the first experiment, we evaluate how the group cardinality influences the performance
of the parallelization strategies on different GPUs. Figure 3.5 shows the throughput of
the fastest thread configuration for each of the three parallelization strategies. The
subplots have different scales on the y axis because want to emphasize the relative
differences for each individual GPU (absolute differences between GPUs are more than
an order of magnitude). We report the number of processed input tuples per second on
the left y axis of each subplot and the derived throughput in GB/s on the right.

As long as the hash table fits into local GPU memory, WorkGroupLocal is the
fastest parallelization strategy. The only exception is the Tesla K40m, where Indepen-
dent is faster than WorkGroupLocal for small group cardinalities. This behavior
is consistent with results reported by Karnagel et al. [149] who also evaluated a Kepler
GPU. On this microarchitecture, atomic operations on local memory are implemented
using a lock/update/unlock pattern that is slow when contention is high [229, §1.4.3.3].
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Starting with the Maxwell microarchitecture, atomics on local memory are implemented
with native instructions. Consequently, WorkGroupLocal is at least 1.3× faster than
Independent on other GPUs.

When the hash table does not fit into local GPU memory, Shared is the fastest
parallelization strategy. There is a steep drop in performance once the size of the hash
table exceeds the L2 cache of the GPU. This behavior is consistent with reported results
on CPUs [206].

The plots in Figure 3.5 show the raw performance of the Aggregate kernel without
data transfers. The A10-7850K can access main memory directly, i.e., the plot shows the
actual throughput of the hash aggregation operator. On dedicated GPUs, performance
is limited by the data transfer bandwidth, indicated by the dashed lines in Figure 3.5,
as long as the hash table fits into the L2 cache. However, for larger hash tables, the raw
performance of the Aggregate kernel drops below the data transfer rate. For these
hash tables, performance is limited by the global GPU memory latency.

To summarize, the fastest parallelization strategies are WorkGroupLocal when
the hash table fits into local memory and Shared otherwise. The only exception are
GPUs which do not support fast atomic operations on local memory, e.g., Kepler GPUs.
On these, Independent aggregation is faster than WorkGroupLocal for small hash
tables. Moreover, the hash aggregation operator is limited by the data transfer rate when
the hash table fits into the L2 cache and by the raw performance of the Aggregate
kernel otherwise.

3.4.5. Influence of the thread configuration

Having determined the fastest parallelization strategy for each group cardinality, we now
evaluate which thread configurations yield the best performance on different GPUs. For
our analysis, we multiply the number of work groups per compute unit and the work
group size of the fastest thread configuration to determine the optimal number of threads
per compute unit. The scatter plots in Figure 3.6 show the optimal number of threads
of each parallelization strategy depending on the group cardinality, i.e., the number
of threads that yields the fastest performance of the Aggregate kernel. We plot all
three measured samples which is why in some plots there are multiple values per group
cardinality and parallelization strategy. These multiple optimal thread configurations
are an indication that the runtime of the Aggregate kernel has a high variation on
some GPUs. We discuss the effects of this variation in Section 3.4.7 and analyze it in
detail in Section 3.4.8.
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Every GPU exhibits a distinct profile in Figure 3.6 but we can identify three common
patterns. (1) Independent aggregation shows a downward trend on every GPU. For this
strategy, each thread requires a private copy of the hash table, straining GPU memory
resources as the group cardinality increases. (2) For WorkGroupLocal aggregation,
the optimal number of threads are clustered around GPU-specific values. The GeForce
GTX 980 exhibits the least variation with 2048 threads over the entire range of groups.
On the Tesla K40m, the fastest configurations also consist of 2048 threads but there
are two outliers. The GeForce GTX 1080 and the Tesla V100 exhibit an inverted bowl-
shaped pattern clustered around 32768 and 8192 threads, respectively. Finally, the
two AMD GPUs show a downward trend clustered around 65536 and 2048 threads.
(3) Shared aggregation exhibits the most variation. A common pattern is a change at
the boundary of the L2 cache. This pattern is most pronounced on the GeForce GTX
980, the GeForce GTX 1080, and on the Radeon R9 Fury.

Note that different thread configurations can yield the same number of threads. For
example, on the GeForce GTX 980, the fastest thread configurations consist of 2048
threads but the actual configurations vary between 2×1024, 4×512, and 32×64 threads,
i.e., 32 work groups per compute unit and 64 work items per work group.

To summarize, the fastest thread configuration for each parallelization strategy is
dependent on the group cardinality and the executing GPU. As we show in the next
section, these hardware differences have a significant influence on performance.

3.4.6. Performance penalty of incorrectly optimized Aggregate
kernels

In this experiment, we demonstrate the importance of optimizing the execution param-
eters, i.e., the parallelization strategy and the thread configuration, for every individual
GPU. For each GPU and group cardinality, we determine the performance penalty when
executing the Aggregate kernel with execution parameters optimized for one of the
other five GPUs. Figure 3.7 shows the maximum performance penalty, over all group
cardinalities, for each GPU. (In Appendix B, we list the performance penalties for each
group cardinality individually.) The subplots represent the GPU on which we execute
the Aggregate kernel. The bars in each subplot represent the GPU for which we op-
timized the execution parameters. To compare the runtimes across group cardinalities,
we normalize them relative to the fastest execution parameters for each GPU.

Figure 3.7a shows the maximum performance penalty when the input data is already
placed in GPU memory. The performance penalty is particularly large, between 4.0×
and 21×, on the Nvidia Tesla K40m. On this GPU, Independent aggregation is the
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Figure 3.7.: Maximum performance penalty of Aggregate kernels, which are optimized
for specific GPUs (bars), when executed on other GPUs (boxes).
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Figure 3.8.: Influence of the thread configuration on the performance of WorkGroup-
Local aggregation at 128 groups. indicates the fastest thread configura-
tion for a GPU. Labeled tiles indicate the normalized runtime of a thread
configuration optimized for another GPU.

fastest parallelization strategy for small group cardinalities, whereas other GPUs use
WorkGroupLocal aggregation. The AMD Radeon R9 Fury and the Nvidia Tesla
V100 also exhibit large performance penalties of 16.9× and 5.1×, respectively, when
executing an Aggregate kernel optimized for the AMD A10-7850K. On both GPUs,
the slowdown is caused by a non-optimal thread configuration.

The effect of a non-optimized thread configuration on the performance of the Ag-
gregate kernel is illustrated more clearly in Figure 3.8, which shows a heat map of
the performance of WorkGroupLocal aggregation of 128 groups. For each GPU, the
fastest thread configuration is indicated by the symbol , and the labeled tiles indicate
the runtime of a tread configuration optimized for another GPU. On the AMD A10-
7850K, the AMD Radeon R9 Fury, and the Nvidia Tesla K40m, i.e., the top row of
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Figure 3.9.: Local minima of the thread configuration search space (left) and perfor-
mance plateaus across influence regions of local minima (right) of Shared
aggregation on the Tesla K40m at 221 groups. The symbol • indicates a local
minimum and the symbol × denotes a performance plateau at the border of
two influence regions.

subplots, a work group size of 256 threads is the fastest. However, the optimal number
of work groups per compute unit differs, and the wrong thread configuration results in
a significant slowdown, particularly on the Radeon R9 Fury. A similar behavior can be
observed on the Nvidia GeForce GTX 980 and 1080, and the Nvidia Tesla V100, for
which a work group size of 1024 threads is the fastest.

Even when we account for the data transfer the performance penalty is up to 2.8×,
as shown in Figure 3.7b. Note that the plots for the AMD A10-7850K are the same
in both subfigures because this GPU is integrated with the processor. On other GPUs,
Figure 3.7b shows the influence of a non-optimal thread configuration on Shared ag-
gregation for large group cardinalities (cf. Figure 3.5 on page 94).

To summarize, Aggregate kernels optimized for a specific GPU exhibit significant
performance penalties when they are executed on another GPU.

3.4.7. Plateaus and minima in the thread configuration search space

In this experiment, we evaluate the properties of thread configuration search spaces when
we fix the group cardinality and the parallelization strategy. As an example, we show in
the left plot of Figure 3.9 the performance of different thread configurations for Shared
aggregation with 221 groups on the Nvidia Tesla K40m. In contrast to the previous heat
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maps, we shift the gradient to increase the resolution at the low end of the scale and to
emphasize the differences between fast runtimes.

The runtime behavior of the Tesla K40m is similar to the Nvidia GeForce GTX Titan,
which is also based on the Kepler microarchitecture [228], and which was previously
analyzed by Karnagel et al. [149]. The heat map appears convex at first glance, but
there are multiple local minima, as indicated by the labeled tiles. Two of these local
minima, at 1×256 and 1024×16 threads, are selected as the global minimum in different
samples, as indicated by Figure 3.6 on page 95. Every local minimum is surrounded
by a region of influence, i.e., the points in the thread configuration search space from
which the gradient flows to the local minimum, which we illustrate in the left plot of
Figure 3.9.

However, the search space also contains performance plateaus, i.e., regions where we
cannot reliably determine which thread configuration is the fastest. We define that two
thread configurations are part of a performance plateau when one of their runtimes
is contained within an interval around the other. The extent of performance plateaus
depend on the size of the interval we allow around each runtime. In our analysis, we set
this interval to either a single standard deviation or 10% of the absolute value, whichever
is greater, in each direction.

In particular, there are performance plateaus which span the borders of any two in-
fluence regions, which indicate by the symbol × in the right plot of Figure 3.9. This
observation indicates that the existence of multiple local minima of the thread config-
uration search spaces is largely an artifact of the variation of the measured runtime of
the aggregation kernel. If we account for this runtime variation, we find that only 2%
out of 1143 tested search spaces have more than one local minimum.

To summarize, individual thread configuration search spaces are nearly convex, i.e.,
they typically have a single local minimum if we account for runtime variation.

3.4.8. Aggregate kernel runtime variation

As we mentioned in the previous two sections, the runtime of the Aggregate kernel
exhibits a high degree of variation on some GPUs. It is necessary to take this variation
into account when comparing the performance of different thread configurations, as we
did in Section 3.4.7. Thus, in this experiment, we analyze the degree of variation of the
Aggregate kernel runtimes on different GPUs. In the following, we first quantify the
degree of variation for each GPU and then analyze the influence of outliers.
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Figure 3.10.: Degree of variation of Aggregate kernel runtimes (different scales on the
x axis for AMD and Nvidia GPUs).

Degree of variation. To quantify the degree of variation, we use the coefficient of
variation, i.e., the ratio of the standard deviation and the mean, of each sample. This
relative metric captures the fact that the degree of variation must be understood in the
context of the measured data. The same standard deviation may indicate a low degree of
variation for slow kernels and a high degree of variation for fast kernels. In Figure 3.10,
we summarize the coefficient of variation for every Aggregate kernel. Note that we
use a different scale on the x axis for AMD and Nvidia GPUs. For clarity, we only
show the variation of the fastest thread configuration for each parallelization strategy
and group cardinality. This filtering biases the plot towards fast Aggregate kernels
but it resembles the plot which includes all thread configurations, except for outliers.
However, it is more important to consider the degree of variation when comparing fast
Aggregate kernels, as we are interested in finding these.

Our main observation is that Nvidia GPUs exhibit a low degree of runtime variation,
with a median coefficient of variation below 0.7%. In contrast, the AMD Radeon R9
Fury exhibits a substantial degree of runtime variation. On AMD GPUs, the outliers
of the measured kernel runtimes often exhibit a higher magnitude than the outliers we
encounter on Nvidia GPUs. In addition, the samples collected on the Radeon R9 Fury
have significantly more outliers than those collected on other GPUs.
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Figure 3.11.: Influence of outliers at the beginning of the measurement on the degree
of variation of Aggregate kernels. The points show the percentage of
kernels for which the average of the first window of three blocks, after
removing outlier blocks in the beginning of the measurement, is at most
1.05% slower than any window of three blocks of the same kernel.

Influence of outliers. The outliers of the measured execution runtimes are not
uniformly distributed. Instead, they are typically clustered at the beginning of each
sample. This behavior is demonstrated in Figure 3.11. The figure shows the percentage
of tested Aggregate kernels for which the coefficient of variation, when it is computed
over a sliding window of three blocks, drops below a threshold value when we discard
outliers in the beginning of the measurement. For this analysis, we choose 1.05% as
the threshold. This value corresponds to the 99th percentile of the minimal coefficient
of variation computed over any consecutive window of three blocks for every tested
Aggregate kernel.

We observe three key points. (1) For a majority of kernels on the AMD A10-7850K,
as well as on the Nvidia GPUs, there are no significant outliers in the beginning of
our measurements. Concretely, after processing the first window of three blocks, the
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coefficient of variation is smaller than the threshold for at least 63% of the Aggregate
kernels. (2) If necessary, discarding just a single outlier substantially reduces the degree
of variation on Nvidia GPUs, as indicated by the steeply rising curves. (3) On AMD
GPUs, the influence of outliers is more pronounced, as indicated by the slowly rising
curves. Especially on the Radeon R9 Fury, even after we discard the first seven blocks
as outliers, the coefficient of variation is smaller than the threshold for only 52% of the
Aggregate kernels.

To summarize, Nvidia GPUs exhibit a low degree of variation, which can be further
reduced by discarding a single outlier in the beginning of the measurement. In contrast,
AMD GPUs, especially the Radeon R9 Fury, exhibit a high degree of variation.

3.4.9. Summary

We derive five key insights from our analysis. First, Independent aggregation is not
competitive on newer Nvidia GPUs which implement fast atomics on local memory.
Instead, WorkGroupLocal should be used whenever the hash table fits into local
memory. Second, the fastest thread configuration is highly GPU-specific. A thread con-
figuration optimized for a specific GPU is up to 16.9× slower on other GPUs when input
data is already placed in GPU memory, and up to 2.8× slower when the input has to be
transferred to the GPU. Taken together, these two findings show that previously formu-
lated heuristics, which are derived from the study of a specific Nvidia Kepler GPU [149],
are not generalizable to other GPUs.

Third, our analysis shows that the thread configuration search space for a specific
parallelization strategy and group cardinality is nearly convex, i.e., it has a single local
minimum when we account for runtime variation. Forth, NVIDIA GPUs exhibit a low
degree of runtime variation whereas AMD GPUs exhibit a higher degree of variation.

Finally, we show that the performance of the Aggregate kernel is bounded by global
GPU memory latency and not by the data transfer, when the hash table exceeds the L2
cache of the GPU.

3.5. Tuning operator variants for a specific processor

As we have seen in the previous two sections, we can construct hundreds or even thou-
sands of variants for simple database operators by modifying a few implementation or
workload parameters. The fastest variant is highly dependent on the specific proces-
sor on which it is executed, and a non-adapted variant can be an order of magnitude
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Figure 3.12.: Evaluation time in minutes of the selection kernel variants listed in Ta-
ble 3.1 on page 78.

slower than the fastest. Given these results, how can we select the fastest, or at least a
competitively fast, variant for a given processor?

In the next two sections, we describe two algorithms to solve this problem. Both
algorithms use performance feedback gathered during query execution to learn a fast
variant at runtime. They differ in the type of information they rely on, in addition to
performance feedback, to traverse the variant search space. In the following, we motivate
our choice to use an online learning method and discuss the potential benefit of using
only runtime performance feedback to guide the variant search.

3.5.1. Offline vs. online search

A straightforward approach is to run a training phase during database setup in which
we evaluate all possible variants to identify the fastest one. For example, linear algebra
libraries such as ATLAS [336], evaluate a large number of auto-generated variants of
basic linear algebra subprograms (BLAS) during installation, to find an optimal imple-
mentation for a particular environment. However, this offline learning approach has a
number of important drawbacks.

First, an offline exploration of database operator variants is very time-consuming. The
exploration of just one operator and a few implementation and workload parameters
requires a significant amount of time. For example, in Figure 3.12, we show the time
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required for our exhaustive evaluation of a few thousand selection variants in Section 3.3;
on some CPUs, this process requires more than half an hour.

Second, assuming we can search the full variant space reasonably fast, we still face
potential data and workload dependencies [258]. Therefore, the initial exploration should
be based on a representative query workload, which is often hard to facilitate. Even for
a single query, there might not exist a single optimal operator variant, and it is beneficial
to switch the operator implementation while executing the query [258]. Furthermore,
a representative workload also does not account for potential interference from other
workloads on separate processing cores [19, 261, 355].

Third, in cloud-based database-as-a-service applications, the hardware running the
database might change at any given moment because of machine migrations. Therefore,
we require a flexible strategy that allows us to quickly adapt the selected variant to the
new environment.

Given these limitations of offline strategies, we decided to investigate online methods,
which rely on performance feedback generated during normal query execution to select
operator variants. These methods allow us to start making progress on actual queries
immediately, without waiting for an initial training phase, and to react to data and
workload changes. The drawback of online methods are varying execution times of
similar queries, especially in the beginning, when there is little information about variant
performance.

3.5.2. Incorporating information about processor characteristics

One advantage of a learning method that relies only on performance feedback gathered
during query execution is that it makes no further assumption about the processor.
Consequently, it can be applied to very diverse processors, including processors about
which we know very little. For example, our evaluation in Section 3.3 includes familiar
CPUs and GPUs, but also the Intel Xeon Phi, which is difficult to characterize. On the
one hand, it is highly parallel like a GPU; on the other hand, its architecture includes
a branch predictor, which is commonly used in CPUs [293]. Indeed, in our evaluation
it behaves more like a GPU: The fastest variant is a kernel in which multiple threads
cooperate to generate the final result.

Conversely, a large body of prior work has characterized various processor types and
determined best practices [6, 132, 213]. Exploiting this information in addition to per-
formance feedback lets us immediately discard a large part of the search space and avoid
evaluating potentially slow variants.
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3.5.3. Outlook

In the next two sections, we describe two algorithms to learn fast operator variants at
runtime. The first algorithm is based on micro adaptivity [258], but extends it to handle
a large number of candidate variants with unknown performance characteristics. This
algorithm relies only on performance feedback generated during the search. In contrast,
the second algorithm searches a limited search space consisting of variants that have been
previously identified as beneficial on GPUs. It is based on a local search, which relies
on our analysis in Section 3.4.7 of the nearly convex nature of the thread configuration
search space, but extends it to deal with runtime variation during query execution.

3.6. Candidate selection in large variant spaces

In this section, we describe a framework which enables a database to learn a fast operator
implementation for any kind of processor. This framework relies only on performance
feedback gathered at runtime during query execution and does not consider additional
information to reduce the search space based on specific processor characteristics.

Our framework builds upon the concept of micro adaptivity [258], which is used in
Vectorwise [359] to automatically select an operator variant that is optimized for the
actual machine which runs the query and the specific data processed by a query. By itself,
micro adaptivity works best when the number of candidate variants is small. However,
as we have shown in Section 3.3, we can easily generate thousands of operator variants,
even for a simple selection kernel and a small number of implementation and workload
parameters. Therefore, our framework contains an additional step which periodically
generates a small pool of variants containing the candidates that are considered and
evaluated during query execution. We propose two search strategies to generate this
variant pool, a simple greedy search and a genetic algorithm which creates a new pool
based on the fitness of the candidates in the previous pool.

Our evaluation shows that the ability of our framework to select a fast operator variant
depends on the number of competitive variants on a given processor, which we analyzed
in Section 3.3.8. On an Intel Xeon E5620, which has many competitive variants, we
consistently find a variant that is only 1.12× slower than the fastest. Conversely, on an
Intel Xeon Phi 7120, which has few competitive variants, the median performance of the
selected variant after ten queries is 3.4× slower than the fastest.
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3.6.1. Micro adaptivity and the vw-greedy algorithm

Micro adaptivity leverages the vectorized, or block-at-a-time, processing model [38], in
which data of a query is split into cache-sized blocks and one or more query processing
primitives are called repeatedly on those blocks to evaluate a query. Every primitive
exists in multiple variants (called flavors in the original paper [258]), which produce the
same result but differ in their implementation details, e.g., a branched and a branch-free
implementation of a selection primitive. The goal of micro adaptivity is to select for
each block the variant which is expected to be the fastest, given the data characteristics
of the block, the query parameters, as well as the properties and state of the machine
on which the query is executed.

To select the expected fastest variant, micro adaptivity uses the vw-greedy algo-
rithm [258], which casts the problem as a multi-armed bandit [173]. When a primitive
is called for the first time, i.e., at the beginning of the first query, each variant is called
on a number of blocks to learn about its performance. vw-greedy then periodically
switches between exploitation and exploration phases. In an exploitation phase, vw-
greedy selects the expected fastest variant, based on previously observed performance,
and executes it on a number of blocks. During the processing of these blocks, the ob-
served performance of the selected variant might change, and vw-greedy incorporates
this new information when selecting a variant for subsequent exploitation phases. How-
ever, over time, the knowledge about the performance of variants that are not chosen
becomes stale and, as the data and workload changes, the selected variant might no
longer be the fastest. To adapt, vw-greedy periodically enters an exploration phase,
choosing a random variant and evaluating its current performance on a small number
of blocks. Afterwards, it uses its updated knowledge about the variant performance
to select the expected fastest variant in the next exploitation phase. The behavior of
vw-greedy, e.g., the length of the exploration and exploitation phases, is determined
by four parameters, which we describe in Table 3.5.

vw-greedy has three beneficial properties which make it suitable as a foundation
for our learning framework. First, it has very low overhead because its book-keeping
costs are amortized over the tuples contained in a block. Second, each block provides
performance information about the currently chosen variant and the periodic exploration
phase allows it to update its knowledge about variants that were not chosen recently.
Consequently, vw-greedy can quickly adapt to data and workload changes. Third,
slow variants will only affect the performance of a few blocks during exploration instead
of slowing down the entire query.
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Table 3.5.: vw-greedy configuration parameters, and their values used in this section.

Parameter Description
pexplore = 512 Number of blocks between the start of two exploration phases.
pexploit = 8 Number of blocks on which the expected fastest variant is evaluated before

selecting a new variant during exploitation.
lexplore = 2 Number of blocks to determine the runtime of an explored variant.
lskip = 2 Number of blocks to skip when determining the runtime of an explored

variant to reduce the influence of instruction cache misses.

3.6.2. Variant pool size limitation

By itself, vw-greedy is only able to handle cases where the number of existing vari-
ants is comparatively small. To show this limitation, we evaluate a selection query on
the Nvidia Tesla K40m over a 128 GB column partitioned into 1024 blocks of 128 MB,
using randomly selected variant pools of increasing sizes. For each pool size, we re-
peat the experiment 300 times, and for each run, we construct a new variant pool by
randomly selecting variants from the universe of selection operator implementations de-
scribed in Section 3.3. Note that for this experiment, we also include variants with
workload parameters that do not fully utilize the GPU resources, i.e., which have a work
group size of less than eight and use fewer work groups than the available 15 compute
units of the Nvidia Tesla K40m; in total, there are about 4800 variants.

At the start of the query, we evaluate each variant in the pool on four blocks (lskip +
lexplore) to learn about its performance. After this initial exploration, we select a variant
for the remaining chunks using either vw-greedy with the configuration parameters
described in table Table 3.5, or by picking a random variant for each block as a baseline.

The box plots in Figure 3.13 show the results. A pool of size one can contain either a
fast, a slow, or an average variant, resulting in the large spread of the measured runtimes.
As the pool size increases, the pool will contain a mix of fast, slow, and average variants.
When selecting variants at random, the influence of fast and slow variants is reduced
and the runtime distributions contracts and converges towards the mean runtime of all
the variants in the universe, as indicated by the dotted line.

In contrast, vw-greedy reduces the influence of slow variants in the pool but in-
creases the influence of fast variants. Therefore, the spread of the runtime distribution
is contracted even further and the average runtime is shifted towards the runtime of the
fastest variant, as indicated by the dashed line. However, vw-greedy also limits the
practical size of the variant pool to around eight to sixteen variants. With larger pool
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Figure 3.13.: Average variant runtime per block depending on the size of the variant pool
on the Nvidia Tesla K40m. After an initial exploration of each variant in the
pool, the remaining blocks are processed either by selecting the expected
fastest variant using vw-greedy or by a randomly selected variant.

sizes, the initial exploration phase, used to determine the performance of each variant
in the pool, dominates query execution time. Because we evaluate the performance of
each variant on four blocks, at a pool size of 256 variants, the 1024 blocks that make
up the query are used in the initial exploration, and there are no blocks left for the
exploitation phase. The initial exploration of a large variant pool effectively degenerates
to a full evaluation of the entire variant space, which we want to avoid. Thus, the main
challenge our learning framework needs to solve is how to select a comparatively small
variant pool from a universe that can potentially contain thousands of possible variants.

3.6.3. Learning framework overview

Figure 3.14 gives an overview of our learning framework. A parameterized variant gen-
erator is used to produce variants of an operator or a primitive for a given processor.
Individual variants are identified through a configuration, which is a predefined collection
of implementation parameters, and allowed values for them, which modify the behavior
of the variant generator. For example, in Figure 3.15 we summarize the implementation
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Figure 3.14.: Overview of the variant learning framework.

kernel_type: Sequential, GlobalAtomic, LocalAtomic, Reduce, Collect, Transpose
result_type: uchar, ushort, uint, ulong
branched: true, false
unrolled: true, false
elements_per_thread: 1, 2, 4, 8, . . . , 1024
local_size: 0, 1, 2, 4, 8, . . . , maximum device-specific local size

Figure 3.15.: Implementation parameters of the selection kernel and their possible values.

parameters of the selection kernel described in Section 3.3, and their possible values,
which make up the variant universe of this primitive.

Instead of instantiating the full universe of all possible implementations, we only use
a small working pool of around eight to sixteen active variants during the evaluation of
a query. Queries are evaluated using a vectorized runtime [38] which allows us to make
fine-grained performance measurements of the variants, and then use vw-greedy [258]
to select the expected fastest variant from the working pool for each block.

In between queries, or after a fixed number of queries, we use a search strategy to
update the pool based on the collected performance feedback. The search strategy
replaces badly performing variants in the pool by newly selected ones. This process
continuously improves the quality of the variants in the working pool, bringing the
overall performance of the system closer to the optimum in each step. Our learning
framework is fairly flexible, allowing us to plug-in different search strategies that differ
in how they decide which variants to select next.
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3.6.4. Search strategies

As discussed in the previous section, the goal of the search strategy is to periodically
update the active variant pool, based on the collected performance feedback, by replac-
ing underperforming variants with newly selected ones. We use two strategies in our
framework, a greedy search and a genetic search. Both search strategies are initialized
with a pool consisting of randomly chosen variants.

3.6.4.1. Greedy search

For the Greedy search, we keep the two fastest variants of the current pool and replace
the remaining ones by selecting random variants from the variant universe. This strategy
essentially corresponds to a random sampling of the variant universe.

3.6.4.2. Genetic search

For the Genetic search, we also keep the two fastest variants of the current pool.
The remaining variants are replaced by following a genetic propagation protocol that
generates new variants by combining the configurations of two parents from the current
pool. Parents are selected randomly, with a probability proportional to their observed
performance, i.e., faster variants have a higher chance of passing on their configurations.
For every implementation parameter, both parents have an even chance to pass on
their value to the offspring. In order to add genetic diversity and avoid getting stuck
in local minima, we also introduce mutations, i.e., we select a random value for each
implementation factor with a probability of 0.2.

3.6.5. Experimental evaluation

To evaluate our learning framework, we run a series of selection kernels and measure
how the query runtime changes over time.

3.6.5.1. Methodology

Each experimental series consists of ten selection queries with a fixed selectivity of 0.5.
The queries scan a 16 GB column in 1024 blocks of 16 MB each, and we measure the
average runtime per block for each query. After each query, we use a search strategy
to update the current working pool, which contains eight variants. In addition to the
two search strategies Greedy and Genetic, we also use the following baseline: In the
None strategy, the working pool is initialized with random variants and then remains
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Table 3.6.: Number of competitive variants, and performance of the slowest variant, of
the selection kernel at selectivity 0.5. A competitive variant is at most 10%
slower than the fastest.

Processor Number of
variants

Competitive
variants Ratio Maximum

slowdown
Intel Xeon E5620 5880 1370 23% 32
Nvidia Tesla K40M 4696 129 2.7% 136
Intel Xeon Phi 7120 3886 6 0.15% 147

constant for all ten queries. Each experimental series is repeated 100 times to control
for random effects, initializing a random working pool before each repetition.

3.6.5.2. Processors

We run the experiment on three processors, the Intel Xeon E5620 CPU, the Nvidia
Tesla K40M GPU, and the Intel Xeon Phi. These processors differ in the number of
competitive variants, as we describe in Section 3.3.8.

In Table 3.6, we summarize the properties of the variants search space of these pro-
cessors when the selectivity is set to 0.5. The Intel Xeon E5620 has many competitive
variants; 23% of all variants are at most 10% slower than the fastest. In contrast, on
the Nvidia Tesla K40M, only 2.7% of all variants are competitive. The Intel Xeon Phi
7120 is the least competitive processor; only six variants, i.e., 0.15%, are competitive.
Compared to the other processors, the Xeon E5620 is a much easier target to optimize
for, since there is a 23% chance of selecting a competitive variant at random. Therefore,
we expect to clearly see different learning behavior between the three processors.

Note that for this experiment, we include all possible variants in the variant universe,
including those that which do not utilize all compute resources, and which use a local
size of less than eight on the Nvidia Tesla K40M and Intel Xeon Phi 7120.

3.6.5.3. Results

Figure 3.16 shows the results of the experiment. The runtimes on each processor are
normalized relative to the fastest variant at selectivity 0.5, which we determined in
Section 3.3.5.

Intel Xeon E5620. Let us first take a closer look at the Intel Xeon E5620. Even
without using any search strategy, i.e., when using the None baseline, vw-greedy alone
produces a very competitive performance. Except for a single outlier, which is 2.3×
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Figure 3.16.: Influence of search strategies on the average runtime per block over a series
of queries. The runtimes are normalized relative to the fastest variant for
each processor at selectivity 0.5. Note the different scales on the y axis.
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slower than the fastest variant, the average runtime per block is at most 1.37× slower
than the fastest, and the median normalized runtime per block is 1.16×. This behavior
is caused by the runtime performance distribution of the selection kernel variants on the
Intel Xeon E5620. As discussed, 23% of all variants are competitive, i.e., they are at most
10% slower than the fastest variant. Consequently, a randomly initialized working pool
of size eight, as we use in this experiment, has a 88% chance of containing a competitive
variant. Since vw-greedy masks the occurrence of slow variants in the working pool,
even the None strategy produces competitive results.

Building upon the behavior of vw-greedy during the execution of a single query, the
Greedy search strategy improves query runtimes even further. After each query, six of
the eight variants in the pool are replaced, and we have a chance of about 79% to choose
a competitive variant. As a result, after seven queries, the median average runtime of the
working pool is competitive and the worst runtime is only 1.23× slower than the fastest.
However, note that the performance can degrade somewhat in subsequent queries, due
to the initial exploration of a particularly slow variant at the beginning of a query.

The Genetic search strategy achieves an even stronger convergence towards the op-
timum. Here, after two queries the median average runtime is competitive, and after
ten queries, the median average runtime is 1.05× slower than the fastest, and the worst
runtime per block is 1.12× slower. Consequently, the Greedy and Genetic search
strategies effectively improve the average runtime per block over a series of queries, and
they eliminate the influence of particularly bad variants.

Intel Xeon Phi 7120. On the Intel Xeon Phi 7120, vw-greedy alone cannot
achieve as good a performance as on the Intel Xeon E5620. Here, only about six variants,
or 0.15%, are competitive, meaning there is only around a 1.2% chance that a random,
eight-variant pool will contain a competitive variant. Furthermore, the worst variant
on the Xeon Phi is 147× slower than the fastest. Compared to other processors, there
are not only few competitive variants but also some very slow variants, which are likely
to cause a strong performance degradation during the exploration phase. Consequently,
when using the None strategy, the median average runtime is 4.4× slower than the
fastest, and the worst runtime per block is 35× slower.

While the search strategies are able to improve the performance on the Intel Xeon Phi
7120, it is not as impressive as on the Intel Xeon E5620. After ten queries, the Greedy
strategy can improve the average runtime to 3.71× in the median case and to 6.2× in
the worst case. However, there are still substantial outliers in the queries series, where
the worst case performance is slower than 10×, e.g., for query two, four, six and seven.
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The Genetic strategy shows a slightly stronger benefit and is able to improve the
average runtime after ten queries to 3.4× in the median case and 5.8× in the worst case.
It can also suppress severe outliers effectively after three queries. However, the best
median performance of Genetic strategy, a slowdown of factor 2.7×, is achieved after
seven queries, but degrades afterwards. This degradation is most likely caused by the
initial exploration of very slow variants at the beginning of a query.

Nvidia Tesla K40M. On the Nvidia Tesla K40M, 2.7% of all variants are com-
petitive, which is an order of magnitude less than on the Intel Xeon E5620 but an order
of magnitude more than on the Intel Xeon Phi 7120. Consequently, the query perfor-
mance that our variant learning framework can achieve on the Nvidia Tesla K40M is
also between the other two processors.

When the None strategy is used, the median average runtime is 1.87× slower than
the fastest, and the worst runtime per block is up to 6.9× slower. The box plots indicate
a substantial variation in the average runtime per block during the experimental series
compared to the other processors; i.e., the average runtime strongly depends on which
variants are randomly chosen in the initial working pool.

The Greedy and Genetic search strategies are able to considerably reduce this
variation. When using the Greedy strategy, the average runtime per block after ten
queries is improved to 1.63× in the median case and 2.4 in the worst case. The Genetic
strategy can further improve the average runtime per block after ten queries to 1.37×
in the median case. Similarly to the Intel Xeon Phi 7120, the median and worst case
runtime fluctuates during the query series due to the initial exploration of slow variants
at the beginning of each query.

3.6.6. Summary

Our analysis of micro adaptivity shows that it effectively reduces the impact of slow vari-
ants only when the number of variants with unknown performance is small. Otherwise,
the initial exploration of a large number of unknown variants causes the runtime per
block to converge to the average runtime of all variants. Essentially, micro adaptivity
degrades to a full evaluation of the variant universe in this case.

To overcome this limitation, we propose a learning framework which incorporates a
search strategy to periodically update a small working pool of active variants which
are used during query execution. Our experimental evaluation shows that both the
Greedy and the Genetic search strategies can effectively improve the performance
of the variants in the working pool, which improves average query runtime. However,
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their effectiveness largely depends on the number of competitive variants in the variant
universe of a particular processor. If there are many competitive variants, e.g., on the
Intel Xeon E5620, our learning framework reliably finds them after a small number of
queries. However, if there are only few competitive variants, e.g., on the Intel Xeon Phi
7120, the performance depends on random variants contained in the initial working pool.

3.7. Runtime variation-adaptive local search

In this section, we describe an alternative algorithm to find fast operator implementa-
tions at runtime. In contrast to the learning framework described in the previous section,
which is agnostic of the operator and the processor, the design of this algorithm incorpo-
rates knowledge about the behavior of a specific operator on a specific class of processors
to guide the search. Concretely, the algorithm optimizes the implementation parameters
of Aggregate kernels during hash aggregation on GPUs, based on the performance
analysis of this kernel which we conducted in Section 3.4. Focusing on GPUs allows us
to restrict the search space according to well-known best practices, e.g., use coalesced
memory access [213] and GPU-optimized parallelization strategies [149]. Focusing on
hash aggregation allows us to incorporate one of the main findings of our previous anal-
ysis into the design of the algorithm, namely, that the thread configuration search space
of the Aggregate kernels is nearly complex, i.e., it has a single local minimum when
we account for runtime variation (see Section 3.4.7).

The idea of the algorithm is straightforward and is based on a local search of the thread
configuration search space. Given a group cardinality and a parallelization strategy, it
starts from an initial thread configuration and follows the performance gradient to a
local minimum. During the search, the algorithm has to take special care to handle
the effects of runtime variation, i.e., performance plateaus and measurement outliers. If
the runtimes of two configurations are similar, i.e., if they form a potential performance
plateau, it explores the search space from both thread configurations, effectively forking
the path taken through the search space. If the runtimes of the measurements in a
sample differ too much, it repeats the measurement until the variation is reduced.

Our evaluation on six GPUs shows that, on average, our algorithm converges on a
result in less than 1% of the time required for a full evaluation of the search space. In
this time, it finds execution parameters that are at most 1% slower than the optimum
in 90% of our experiments. In the worst case, our algorithm finds execution parameters
that are at most 1.29× slower than the optimum.
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Input: An initial thread configuration c0; a similarity coefficient s; a prune factor p > 1.
1 t(c0)← ProcessBlocksWith(c0)
2 cf ← c0 ▷ Initialize fastest known configuration.
3 Q← {c0}
4 while Q ̸= ∅ do
5 ci ← Peek(Q)
6 if t(ci) > p× t(cf ) then
7 Pop(Q) ▷ Prune slow reference configurations.
8 else
9 N ← UntestedNeigborhoodOf(ci)

10 if N ̸= ∅ then
11 cj = Pop(N) ▷ Evaluate neighbor of current configuration.
12 t(ci) ← ProcessBlocksWith(cj)
13 if t(ci) ∼s t(cj) then ▷ Keep record of performance plateaus.
14 Push(Q, cj)
15 else if t(cj) < t(ci) then ▷ Follow gradient in search space.
16 ReplaceFirst(Q, cj)
17 end
18 if t(cj) < t(cf ) then
19 cf ← cj ▷ Update fastest configuration.
20 end
21 else
22 Pop(Q) ▷ Backtrack from local minimum.
23 end
24 end
25 end

Algorithm 3.1: Dynamic selection of thread configurations.

3.7.1. Algorithm overview

Algorithm 3.1 shows the pseudocode of the local search algorithm. In the following, we
describe its key aspects in detail.

3.7.1.1. Notation and definitions

We use ci to represent a thread configuration and t(ci) to express its runtime. We define
the runtimes of ci and cj as similar if one of them is within the interval determined by
a similarity coefficient s around the other:

t(ci) ∼s t(cj) ⇐⇒ (1− s)t(ci) ≤ t(cj) ≤ (1 + s)t(ci).

3.7.1.2. Inputs, initial steps, and main optimization loop

The inputs of Algorithm 3.1 are an initial thread configuration c0, a similarity coeffi-
cient s, and a pruning factor p. The similarity coefficient is used by our algorithm to
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identify two runtimes as part of a performance plateau. The pruning factor is used to
exclude parts of the search space when exploring multiple branches from performance
plateaus. During execution, our algorithm maintains a FIFO queue Q containing ref-
erence positions ci from which it explores parts of the search space. It also tracks the
fastest thread configuration cf it has encountered so far.

The algorithm starts by executing the initial thread configuration c0 on a number of
blocks to determine its runtime (line 1). It then sets c0 as the fastest thread configu-
ration encountered so far and initializes the reference queue Q with c0 (lines 2–3). The
algorithm then enters the main optimization loop which continues as long as there are
reference positions in the queue (line 4). In each loop iteration, the algorithm first com-
pares the execution time of the reference configuration ci at the top of the queue to the
fastest known thread configuration cf . If ci is slower than the fastest known runtime cf

with respect to the pruning factor p, it is removed from the queue and pruned (lines 5–7).
Otherwise, the algorithm selects a neighbor cj of the current thread configuration ci and
evaluates its runtime on a number of blocks (lines 9–12).

3.7.1.3. Handling performance plateaus

When comparing the runtimes of two thread configurations ci and cj , the algorithm
distinguishes three results of the comparison to handle performance plateaus.

Case (1) If ci and cj have similar runtimes with regard to the similarity coefficient
s, i.e., if they are part of a performance plateau, both are added to the top of
the queue (lines 13–14). In subsequent loop iterations, the algorithm follows the
performance gradient in the search space from ci and cj independently, until one
or both of the branches are pruned.

Case (2) Otherwise, if cj is strictly faster than ci, then ci is replaced with cj in the
queue (lines 15–16).

Case (3) Otherwise, if cj is strictly slower than ci, the algorithm tries out a different
untested neighbor c′

j of ci in the next loop iteration.

If there are no more neighbors of ci, the algorithm has reached a local minimum.
It removes ci from the queue and backtracks to a previously encountered c′

i inside a
performance plateau (line 22). Note that by setting the similarity coefficient s to 0, the
algorithm ignores performance plateaus and strictly follows the performance gradient in
the search space.
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3.7.1.4. Handling measurement outliers

When measuring the runtime of a thread configuration, the algorithm has to satisfy
two conflicting requirements. On the one hand, we want to reduce the influence of
slow thread configurations. On the other hand, we want to reduce the influence of any
outliers in the beginning of the measurement. To this end, the algorithm executes a
thread configuration on three blocks. It then determines the degree of variation and
compares it to a threshold value vmax. If the variation is below the threshold, the
algorithm returns the mean runtime as the measurement. Otherwise, the algorithm
discards the first measured value and executes the thread configuration on another block.
The algorithm continues until the variation drops below the threshold or it has processed
bmax blocks. This process is encapsulated by the function ProcessBlocksWith(ci) in
Algorithm 3.1.

Instead of computing the coefficient of variation, as we do in Section 3.4.8, we compute
the range between the minimal and maximal measured values and divide it by the
mean. This approach significantly reduces overhead by eliminating a costly square root
operation that is part of computing the standard deviation. We set vmax = 0.019, which
corresponds to the 99th percentile of the normalized range coefficient computed over
windows of three blocks on all GPUs, based on our analysis in Section 3.4.8. In other
words, we expect the algorithm to process more than three blocks in only one case out
of a hundred.

3.7.1.5. Optimizing multiple parallelization strategies

To support multiple initial thread configurations c′
0, the algorithm evaluates and adds

them to the queue of reference positions before entering the optimization loop. This
approach allows us to probe the thread configuration search space from multiple positions
and to optimize multiple parallelization strategies simultaneously.

3.7.1.6. Initial thread configurations

The number of loop iteration of our algorithm, and therefore its runtime, depends on
the initial thread configuration c0. Based on our analysis in Section 3.4.3, we determine
for each parallelization strategy the thread configuration with the lowest normalized
runtimes, averaged over all GPUs and group cardinalities.

If WorkGroupLocal aggregation is possible, i.e., if the group cardinality is between
one and 2048, we use 4×512 threads as the initial configuration. On the Nvidia Tesla
K40m, we also use Independent aggregation with 1×256 threads as an additional
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initial configuration, but exclude it on newer GPUs because it not competitive. For
larger group cardinalities, we use Shared aggregation with 1×512 threads as the initial
configuration. Note that AMD GPUs only support 256 work items per work group, so
we adjust the initial configurations accordingly.

3.7.2. Support for other operators

The algorithm described in this section can optimize any operator that satisfies the fol-
lowing two requirements. First, the thread configuration search space has to be (nearly)
convex, since the algorithm exploits this property to efficiently search it. Second, the
algorithm must be able to change the implementation of the operator for each processed
block without loosing the progress made by processing previous blocks.

For example, hash aggregation satisfies the second requirement because every paral-
lelization strategy merges the results of processing a block into a single, globally shared
aggregation table. This shared hash table encapsulates the global state of the aggre-
gation. Many important database operations satisfy the second requirement, e.g., any
operator that materializes its output, such as selections and partitioned joins [46, 87,
258, 268].

Note that some operator implementations may use local state that is incompatible with
other implementations, as long as it can be discarded once the block is processed. For
example, in our analysis, the number of private hash table copies used by Independent
and WorkGroupLocal aggregation differs. We can also process blocks with different
hash functions, hashing schemes, and load factors.

3.7.3. Evaluation

To evaluate our algorithm, we examine the influence of the two hyper parameters we
introduced to manage performance plateaus, i.e., the similarity coefficient s and the
pruning factor p.

3.7.3.1. Experimental setup

We vary the similarity coefficient s from 0 to 0.1, in steps of 0.01, i.e., the runtimes of two
measurements can differ by at most 10% for the measurements to be considered part of a
performance plateau. Similarly, we vary the pruning factor p from 1 to 1.1, also in steps
of 0.01. We set the maximum degree of variation vmax = 0.019, so that the expected
number of processed blocks per measurement is three in 99% of all measurements. We
set the maximum number of processed blocks per measurement bmax = 10.
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Each combination of hyperparameters is evaluated on the three measurement samples
collected in Section 3.4.3 to control for random runtime variation. To speed up the
evaluation, we implement the algorithm in Python and inject the execution runtimes
collected in Section 3.4.3 into the algorithm.

3.7.3.2. Metrics

We evaluate Algorithm 3.1 with three metrics. The first metric indicates the quality
of the found thread configuration. Let cf be the thread configuration found by our
algorithm, t(cf ) its runtime, and t(cF ) the runtime of the fastest thread configuration
for a given processor and group cardinality, which we determined in Section 3.4.3. Then
the quality of cf is its normalized runtime relative to cF :

quality(cf ) = t(cf )
t(cF ) .

The second metric indicates the cost expended for optimization in terms of the number
of blocks the system could have processed with the fastest thread configuration. Let n

be the number of blocks the algorithm processed until it converged to the found thread
configuration cf , and let ci be the thread configuration which was used to process the
block i. Then the cost of cf is the difference between the cumulative normalized runtime
and the number of blocks:

cost(cf ) =
n∑

i=1

t(ci)
t(cF ) − n.

This formula takes into account that thread configurations that are marginally slower
than the fastest only add a small penalty, regardless of how many thread configurations
are tested.

As a final metric, we determine the amount of time the algorithm requires to converge
to cf compared to a full evaluation of the search space.

3.7.3.3. Results

In general, the quality of the found runtime cf improves, and the cost increases, as we
increase the similarity coefficient cf and pruning factor p. For clarity, we report the
results of two scenarios.

Scenario (1) In the strict runtime comparison scenario the algorithm ignores perfor-
mance plateaus, i.e., s = 0 and p = 0. This scenario serves as our baseline.
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Figure 3.17.: Quality of found configuration.

Scenario (2) In the detection of performance plateaus scenario, we use a similarity
coefficient s = 0.06 to detect performance plateaus and a pruning factor p = 1.07
to remove slow thread configurations during the search. Increasing these values
further does not result in an improvement of the runtime of the found thread
configuration in the worst case.

Quality of found configuration. Figure 3.17 shows the runtime of the found
Aggregate kernel relative to the fastest configuration per group cardinality. By simply
following the gradient of the thread configuration search space, the algorithm finds the
fastest configuration in 36% of our experiments, even if it ignores performance plateaus.
When treating thread configurations with similar runtimes as performance plateaus, the
algorithm finds the fastest configuration in 62% of our experiments. In fact, in 90% of
the time, the found configuration is at most 1% slower than the fastest. The worst-case
performance of the found configuration improves from a factor of 1.39× to 1.29×.

The outliers in Figure 3.17 are caused by two factors. In one third of the cases,
the algorithm finds a thread configuration that is a local minimum but not the global
minimum in the thread configuration search space. For example, on the AMD A10-
7850K, it finds a thread configuration that is 1.15× slower than the fastest for a group
cardinality of 211. In this case, the similarity coefficient and the pruning factor are not
aggressive enough to detect this local minimum as part of a performance plateau.
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Figure 3.18.: Cost expended for optimization.

In the other two thirds of the cases, the algorithm terminates because the first few
blocks of a sample are much faster than the average runtime of the thread configuration
in the sample. For example, again on the AMD A10-7850K, the first few blocks of the
thread configuration found for a group cardinality of 221 are as fast as the fastest thread
configuration on this processor. However, subsequent blocks are much slower, so that
the average performance of this thread configuration is 1.29× slower than the fastest.

In both cases, the underlying cause of outliers is the runtime variation of the Aggre-
gate kernel, which we analyzed in Section 3.4.8.

Cost expended for optimization. Figure 3.18 shows how many additional blocks
the database could have processed in the time our algorithm converges to a thread
configuration, if it had known the fastest configuration from the beginning. This cost
increases as the algorithm treats configurations with similar runtimes as performance
plateaus and processes additional blocks to reduce the influence of outliers. However,
this work is not wasted as the algorithm still makes progress towards the result. When
the algorithm detects performance plateaus, the median cost is between 33 and 54 blocks,
which in our setup corresponds to 1.06 GB and 1.73 GB of data, respectively. The
median cost on the Radeon R9 Fury, which exhibits a high degree of runtime variation,
is 172 blocks.
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Figure 3.19.: Optimization effort compared to full evaluation.

Comparison to full evaluation. Figure 3.19 shows the time our algorithm re-
quires to converge to a fast variant as a fraction of the time required for a full evaluation
of the search space. On every GPU, the median runtime is below 1.05% of a full eval-
uation. There are a few outliers when the algorithm requires more than 20%. In these
cases, the thread configuration search space contains many configurations with similar
runtimes which form large performance plateaus. However, since these configurations
are only marginally slower than the fastest, they do not add significant overhead to query
execution.

3.7.4. Summary

By following the gradient in the thread configuration search space, our algorithm finds
fast execution parameters for the Aggregate kernel in 36% of our experiments. Treat-
ing thread configurations with similar runtimes as performance plateaus improves the
success rate to 62%, and the worst-case runtime of the found thread configuration im-
proves from a factor of 1.39× to 1.29× compared to the fastest. The runtime of the
algorithm is highest on GPUs that exhibit a large degree of runtime variation but is still
less than 1% of a full evaluation of the search space on average.

125



3.8. Related Work

In this section, we describe related work, which we group into four categories: (1) works
that analyze the impact of implementation variants on heterogeneous hardware, (2) hard-
ware adaption of computational kernels through auto-tuning, (3) auto-tuning databases,
and (4) adaptive query processing. The two systems most closely related to our work
are Hawk [46], which adapts operator implementations to the processor through auto-
tuning, and Excalibur [104], which adapts to the processor during query processing; we
describe these systems in detail in Section 3.8.3.1 and Section 3.8.4.1, respectively. For
query processing systems which are built on top of OpenCL, we refer to Section 2.4.5
and Section 2.6.2.1.

3.8.1. Impact of implementation variants on heterogeneous hardware

Database research on GPUs often compares specially GPU-adapted operator implemen-
tations to well-known CPU implementations, e.g., for join [190] or aggregations [149].
However, we are only aware of few works, which compare the impact of multiple imple-
mentation parameters to a heterogeneous set of processors.

Rul et al. [272] evaluate the impact of loop unrolling, SIMD vectorization, and the
number of work items per work group on OpenCL kernels on an Intel CPU, on GPUs
from ATI and Nvidia, and on the Cell Broadband Engine [141]. They observe that the
impact of individual implementation parameters varies on the evaluated architectures,
that the ATI GPU is much more sensitive to specific implementation parameters than
the Nvidia GPU, and that no combination of implementation parameters is optimal
for every architecture. Consequently, they conclude that OpenCL is not performance
portable.

Broneske et al. [48] evaluate the impact of loop unrolling, branch-free execution, SIMD
vectorization, and parallelization on the scan operator on multiple Intel CPUs. They
conclude that there is no optimal scan variant for all CPUs.

Gubner et al. [105] evaluate different flavors of data-centric [208] and vectorized [38]
execution, including prefetching [199], on ARM, POWER, RISC-V, and x86 CPUs. Im-
portantly, they find that the well-known heuristic that vectorized execution outperforms
data-centric execution on workloads with many parallel memory accesses, which is de-
rived from experiments on x86 CPUs [151], does not necessarily hold on other architec-
tures, e.g., the ARM Graviton 1 or the POWER9 CPU. This observation strengthens our
conclusion that heuristics derived from the study of a particular hardware architecture,
i.e., Kepler GPUs in our work, do not necessarily translate to other architectures. Ac-
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cordingly, Gubner et al. also identify the need to adapt the implementation of a database
engine to the underlying hardware [105].

3.8.2. Auto-tuning computational kernels

Auto-tuning has been used effectively to adapt computational kernels to the hardware
environment on which they are executed. For example, ATLAS [336] optimizes linear
algebra kernels on different CPU architectures; MAGMA aims to do the same on GPUs
and heterogeneous CPU/GPU systems [24, 180]. FFTW [85] and SPIRAL [253] opti-
mize discrete Fourier transform and other signal processing algorithms on different CPU
architectures. PATUS [53] optimizes stencil computations on CPUs and GPUs.

These frameworks use a variety of search algorithms, including exhaustive search, ran-
dom search, heuristics, dynamic programming, hill climbing, or evolutionary search. In
their discussion on OpenTuner [18], Ansel et al. note that a suitable representation of the
search space is domain-specific, since implementation parameters may be independent
of each other or strongly coupled. Indeed, some of our implementation parameters are
strongly coupled, e.g., the number of work items and the bitmap element size for selec-
tion kernels. Good search strategies are also domain-specific, since a search strategy that
finds optimal results in one domain may miss good solutions in other domains [18]. The
optimal search strategy also depends on the time budget available for the search [253].

Seo et al. [282] investigate the influence of the work group size on OpenCL kernel
performance and describe a model-based algorithm to dynamically pick a work group
size that minimizes cache misses and improves load balancing on multi-core CPUs. In
contrast to GPUs, the thread configuration on CPUs is only determined by the number
of work groups and not the work group size.

3.8.3. Database auto-tuning

Auto-tuning also has a long history in industry databases and data management re-
search, e.g., learning optimizers [194, 195, 299], index advisors [11, 326, 341], or knob
tuning [328, 354, 358]. These systems either train on a representative workload or observe
the behavior of different configurations during query processing to improve the perfor-
mance of future queries. Recently, approaches based on deep learning have received
widespread interests [167, 178, 194, 195]. However, deep learning approaches that aim
to replace traditional database optimizers require a long training time, have poor tail
performance, and require retraining when the workload changes [194]. While query ex-
ecution time depends on the hardware environment, learning optimizers generally focus
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on data characteristics, e.g., estimated cardinalities [299]. However, systems for knob
tuning in cloud environments explicitly take changes to the hardware enviroment into
account [328, 354, 358].

3.8.3.1. Hawk

Hawk [46] is an auto-tuning query compiler for heterogeneous processors, i.e., CPUs,
GPUs, and the Intel Xeon Phi. Hawk first translates a query into a set of pipeline
programs, an intermediate representation of a parameterized operator pipeline. Pipeline
programs are adapted to different processors with pipeline or operator-specific modifi-
cations, including (1) processing the data in a single pass, or using lock-free algorithms
with multiple passes [116, 118]; (2) selecting between shared or independent aggrega-
tion [58], as well as the specific hash table implementation, i.e., linear probing or Cuckoo
hashing [237]; and (3) low-level code transformations, e.g., predication, loop unrolling,
SIMD vectorization, or memory access coalescing [213]. The modified pipeline programs
are then compiled to OpenCL and passed to a vendor-specific OpenCL driver.

To determine which modifications are beneficial for a particular processor, Hawk per-
forms an offline training phase based on a representative query workload; in contrast, our
work tries to find fast operator implementations at runtime. Starting with the modifica-
tions that have the highest expected impact on performance, Hawk determines the value
of each modification dimension which yields the lowest execution time, independently of
the other modification dimensions. This strategy does not account for interdependencies
between different types of modifications; indeed, the found combination of modifications
may not even be a local minimum in the search space. To counteract this deficiency,
Hawk repeats this process multiple times from different initial starting points in the
search space.

3.8.4. Adaptive query processing

Our work is closely related to adaptive query processing (AQP), in which the query
execution plan is modified while the query is running. Deshpande et al. [69] provide
a survey on early work on AQP, focussing on cardinality estimation and join ordering.
In recent works, AQP has been used to rearrange the predicate evaluation order [101,
200, 277, 350], change the join order [200, 277, 324, 334], or switch between latency
and throughput-oriented execution backends [152, 162]. Notably, Grizzly [101] is able
to switch between shared and independent aggregation at runtime and also specializes
the hash table data structure depending on observed data characteristics. Similarly,
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Permutable Compiled Queries [200] specializes hash aggregation for heavy hitters. When
AQP is used together with query compilation, the cost of compiling the query multiple
times can be mitigated through fast compilation backends [88, 90, 152], or through
patching, i.e., reordering precompiled code fragments [200, 277]. In general, these works
also focus on reacting to non-optimal query plans due to data characteristics, and they
do not evaluate large search spaces. Nevertheless, they provide valuable contributions
to a query processing system that adapts to heterogeneous hardware.

Of note is also the work by Zhang et al. [357], who adapt a general purpose compiler,
i.e., Graal [339], to apply micro adaptivity [258] to data-intensive for-loops in generic pro-
grams. During compilation, the compiler creates variants to reorder predicates, change
their evaluation strategy according to Ross [270], and apply SIMD vectorization if there
are few data-dependent conflicts. It then selects the best variant at execution time. Sim-
ilarly to our work, the authors identify the problem of finding good candidate variants in
a large search space. To this end, the compiler performs an exhaustive evaluation over a
range of selectivities and computational load estimates of predicates at installation time.

3.8.4.1. Excalibur

Excalibur [104] is a query execution virtual machine, which JIT-compiles data processing
primitives to code fragments and adapts them to different processors. Excalibur first
segments a query into a set of pipelines, consisting of operators expressed in the VOILA
domain-specific language [103]. Every VOILA primitive can be compiled into a vector-
ized code fragment, which by default results in a vectorized execution [38] of the query.
From this baseline, Excalibur adapts the generated executable code using mutation rules.
These rules include low-level operator implementation parameters similar to ours, i.e.,
loop unrolling, as well as setting a specific SIMD size to prevent down-clocking of the
processor. In addition, there are mutation rules for more high-level plan changes, i.e., the
inclusion of bloom filters, swapping operations to reorder filter predicates, and the inlin-
ing and JIT-compilation of multiple VOILA primitives into a single code fragment. The
latter rule allows Excalibur to seamlessly mix vectorized and data-centric [208] query
execution for different parts of a query plan.

Similarly to our work, Excalibur tries to find beneficial variants (called flavors) at run-
time, and casts the tradeoff between exploiting the fastest known variant vs. exploring
the search space as a multi-armed bandit problem. The authors evaluate three explo-
ration strategies, i.e., (1) a random traversal of the search space, (2) a heuristic search
based on well-known query plan optimization rules, and (3) an adaptation of Monte
Carlo Tree Search (MCTS) [288]. Of these, the heuristic search and MCTS yield the
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best results, depending on the size of the processed data. This result is inline with our
observation that a random exploration of the search space does not quickly converge
to a fast variant, and that we have to guide the exploration of the search space using
information about the processor characteristics and operator behavior. Furthermore,
Excalibur limits the amount of exploration time by a risk budget, which results in most
of the exploration being done at the beginning of the query. This behavior is based on
the insight that a fast variant that is found at the end of the execution of a query has less
chance to pay off its exploration cost. In contrast, we explore the search space between
different queries, but also periodically try out every variant in the variant pool during
the execution of a single query in order to react to changes in the data distribution [258].

Excalibur only targets query execution on CPUs; to also target GPUs, a number of
adaptations are necessary. For example, it should include techniques to mitigate branch
divergence [89, 243], and adapt the heuristic search strategy to incorporate best practices
for GPU programs [213].

3.9. Discussion and conclusion

In the following, we summarize the main insights and results of our investigation of our
two research questions for this chapter, i.e., (1) how sensitive are processors to changes
in the operator implementations, and (2) how can a query processing systems learn
fast operator implementations automatically, without manual tuning? We then discuss
open problems and future work, i.e., how to integrate our learning algorithms in a query
processing system, how we can deal with data and query changes, and how to efficiently
generate code for different operator implementations.

3.9.1. Processor sensitivity

To answer the first research question, we implemented variants of two data processing
primitives, a selection kernel and a hash aggregation kernel. We evaluated the selec-
tion kernel on thirteen CPUs, GPUs, and an Intel Xeon Phi coprocessor, and the hash
aggregation kernel on six AMD and Nvidia GPUs, which are based on different microar-
chitectures. As a measure of sensitivity, we determined the distribution of the variant
performance on each processor, and classified a variant as competitive, if it is at most
10% slower than the fastest. We can derive four main results from our analysis.

First, we substantiated the operator variant selection problem on heterogeneous hard-
ware. Even for simple operations and a small number of implementation parameters, we
can generate thousands of possible implementation variants. No single variant performs
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well on every processor, and the fastest variant depends on the type of processor, the
vendor, and the specific microarchitecture.

Second, the number of competitive variants varies by two orders of magnitude, from
more than 20% on the three single-socket Intel CPUs, to just 0.15% on the Intel Xeon
Phi 7120. This behavior makes it much harder to automatically find a fast operator
variant on the Xeon Phi.

Third, the influence of implementation parameters is also processor-specific. For exam-
ple, we found that the number of OpenCL threads has little influence on the performance
of the selection kernel on Intel CPUs, as long as all logical processing cores are utilized.
In contrast, on an AMD CPU, the number of threads has to precisely match the number
of processing cores. Similarly, on the Intel Iris 5100, the Nvidia Tesla K40m, and the
Intel Xeon Phi 7120, only very specific thread configurations are competitive.

Fourth, our analysis of hash aggregation on six GPUs showed that previously derived
heuristics, which were based on the analysis of a single Nvidia GPU, do not generalize
to newer GPUs, which support fast atomic access to local GPU memory in hardware.
Even if we take this capability into account, we found that thread configurations that
are optimized for one GPU incur significant performance penalties on other GPUs.

Taken together, these findings indicate the need to adapt the operator implementation
individually for every processor.

3.9.2. Auto-tuning operator implementations

To answer our second research question, we devised two algorithms to automatically
adapt the operator implementation to the current processor. The algorithms differ in
the type of information they incorporate to guide the search.

The first approach is based on micro adaptivity [258] and relies only on performance
feedback gathered at runtime. Our analysis showed that the ability of micro adaptivity
to hide the impact of slow variants degrades as the number of variants with unknown
performance increases. However, in our setting, i.e., with thousands of variants and
unknown processor behavior, we do not know which variants are good candidates to
consider. Our solution is to restrict micro adaptivity to a small working pool, and use a
search strategy based on a genetic algorithm to periodically update the pool with new
candidates to explore. This approach significantly improves the average performance of
the fastest variant in the working pool, which micro adaptivity is then able to select in
the exploitation phase. However, the absolute performance that we can achieve strongly
depends on the random selection of the variants in the initial working pool. Conse-
quently, this approach works well on processors with many competitive variants, e.g.,
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the Intel Xeon E5260, where the median runtime of the variant selected after ten queries
is just 1.05× slower than the fastest variant. On the Nvidia Tesla K40m, which has
fewer competitive variants, the median runtime after ten queries is 1.37× slower than
the fastest, and on the Intel Xeon Phi 7210, which has very few competitive variants,
the median runtime after ten queries is 3.4× slower than the fastest.

If the goal of query optimization is to avoid bad query processing strategies, then we
unnecessarily handicap ourselves by just relying on runtime performance feedback to find
fast operator variants. Therefore, in our second approach, we restrict the search space
to a coalesced memory pattern on GPUs and only consider parallelization strategies
for the hash aggregation operator which are known to perform well on each GPU and
group cardinality. We traverse the remaining search space with a specialized local search
strategy, which follows the performance gradient but accounts for runtime variation and
possible plateaus in the search space by branching the search when the runtime of two
variants is very similar. This approach finds the fastest variant in 62% of the time
and the worst case performance is just 1.29× slower than the fastest. The local search
relies on our analysis that the thread configuration search space is nearly convex, i.e.,
it has a single local minimum if we account for runtime variation. Even though we
provided experimental evidence for this behavior of the hash aggregation kernels on the
six GPUs that we tested, we cannot assume that other GPUs or operators exhibit the
same behavior. However, if we cannot assume the existence of a single local minimum,
we can probe the search space from multiple points, and use a scheme similar to micro
adaptivity to switch between phases in which we explore the search space or exploit
previously collected performance data.

One motivation of just relying on runtime performance to guide the search, was to find
fast variants on processors with unknown performance characteristics. If we consider the
niche Intel Xeon Phi 7120 as an example of such a processor, then this approach did
not produce the desired results. The genetic algorithm which we used to generate can-
didates for the micro adaptivity working pool was not able to quickly find a competitive
variant. Therefore, we conclude that we should exploit the available information about
a processor, or invest time in microbenchmarks to determine processor characteristics,
in order to restrict the variant search space.

3.9.3. Dealing with data and query changes

In this chapter, we optimized the variants for a fixed query and constant data charac-
teristics, e.g., a single selection predicate over uniform random data, or a single sum
aggregation over a data with fixed group cardinality. In principle, it is possible to start

132



the learning process from scratch if we encounter a new query with new data character-
istics. However, this approach has two disadvantages. First, we ignore the information
about the processor that we gained during the optimization of variants for prior queries.
Second, storing the runtime information about the evaluated variants for each query, in
order to reuse them if we encounter the query again, would be infeasible if there are a lot
of ad hoc queries. Instead, we should learn a model about the processor behavior based
on the information we collect during the evaluation of different variants for a query.

A promising method to learn such a model is Bayesian optimization [47]. Bayesian
optimization works well for optimization problems where the objective function, i.e., the
runtime of a variant on a block of data, is expensive to evaluate. Based on a prior,
i.e., an initial starting variant, Bayesian optimization predicts a new variant to evalu-
ate. This decision is a trade-off between exploration, i.e., testing variants with uncertain
runtimes, and exploitation, i.e, choosing a variant that is expected to be fast, and it
aims to minimize the number of evaluations. Furthermore, Bayesian optimization can
predict multiple new samples [292] to form a working pool for a query from which we
can select the fastest variant using micro adaptivity. However, Bayesian optimization
is impractical to predict new variants during the evaluation of a query because it is
expensive to evaluate compared the execution of a variant on a block of data. In our
initial experiments with Spearmint [114], which is geared toward the optimization of hy-
perparameters for expensive machine learning algorithms, we observed prediction times
of about one second. This overhead is acceptable for a set of queries but not for an
individual block of data.

3.9.4. Variant and code generation

So far, we have omitted from the discussion the generation of executable code for different
variants. Because many variants are evaluated on a few small blocks of data and then
discarded, the overhead of generating a variant, including the compilation of OpenCL
kernel code to the target processor by the OpenCL driver, must be low.

To generate the selection kernel variants in Section 3.3, we enumerate all possible vari-
ants which can be generated from the specified implementation parameters, compile the
corresponding OpenCL source code, and cache the binary kernel code in the filesystem.
However, this approach is not scalable because in order to eliminate the compilation
latency during query execution, we move the compilation of variants to the installation
time, and compile variants that may not be evaluated. In contrast, the upfront compi-
lation of the variants for the hash aggregation kernels in Section 3.4 is feasible because
the generated code depends on a single implementation parameter, the parallelization
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strategy. Since the thread configuration is set dynamically at runtime, we can evaluate
a variants with a different thread configurations without overhead.

However, recent work has made the dynamic generation of variants more practical.
Specialized intermediate representations (IRs) and query compilers, such as Flounder
IR [88, 90] or Umbra IR/Flying Start [152], which are optimized for relational queries,
greatly reduce the query compilation time compared generic query compilers, which are
based on LLVM IR [174]. Specifically, Umbra [209] requires a comparable amount of time
to prepare the execution of a query as interpreter-based systems, such as MonetDB [37]
and DuckDB [256], which do not incur the query compilation overhead [152]. This result
makes query compilation feasible for short-running queries, which is essentially what a
short-lived variant is. Query compilation time can be further amortized over multiple
variants, by compiling code blocks for multiple variants into a single executable and then
synthesizing a concrete variant during query execution [277]. A similar strategy can
synthesize variants from precompiled primitives during query execution in interpreter-
based systems [200].

3.9.5. Integration into a query processing system

We can now sketch the design of a complete query processing system which automatically
adapts the executed data processing code to the processor it runs on. Such a system first
reduces the search space by excluding variants which are expected to be slow, based on
processor-specific best practices and/or the results of microbenchmarks. During query
planning, the system picks a small number of variants to constructs a working pool.
These variants are transformed into executable code by a low-latency query compiler
or synthesized from precompiled code fragments in interpreter-based systems. During
query execution, the system employs micro adaptivity to pick the fastest variant from the
working pool, and to adapt to changing data characteristics. The performance feedback
gathered during query execution, as well as query and data characteristics, are fed back
into a learning model, which refines the search space in the background, to guide the
selection of the variants in the working pool for subsequent queries.
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4
Processing Java UDFs in a C++

Environment

4.1. Problem statement

In the previous two chapters, we investigated the effect of heterogeneous processors on
the implementation of query processing systems. In this chapter, we shift our focus
from hardware heterogeneity to software heterogeneity, and investigate how to integrate
different software components in a diverse data analytics ecosystem, in order to achieve
both high programmer productivity and application performance.

Many popular data analytics frameworks, e.g., Hadoop [309], Spark [313], and Flink [308],
are written in Java, or in another language that uses the Java Virtual Machine (JVM).
The reasons for this state of affairs are partly historical, but Java also offers clear ad-
vantages, e.g., the rich ecosystem of languages and tools that are built on top of the
JVM, as well as an abundance of developers trained in Java. A key feature these data
analytics frameworks is an execution model centered on user-defined functions (UDFs).
UDFs are used as arguments to second-order functions such as map and reduce (e.g., in
Hadoop) or within declarative queries (e.g., in SparkSQL [20]). By supporting arbitrary
code inside UDFs, these systems achieve a high degree of expressiveness and versatility.

However, users may want to implement parts of a data analytics pipeline in a compiled
programming language, such as C++, in order to utilize machine resources better, and
achieve higher performance, than JVM-based systems [349]. We refer to code which is
compiled down to machine code and executed directly by the CPU without an intervening
interpreter or JIT compiler as native code. UDFs pose a particular challenge in this
scenario because there is no straightforward way to link Java bytecode with native code.
That is because the JVM abstracts from its internal representation of Java objects
and how Java bytecode is executed by the JVM. The Java Native Interface (JNI) [234]
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provides a mechanism to bridge this gap by allowing Java methods to call native functions
and vice versa. Through the JNI, native code can even instantiate an embedded JVM
to execute Java code. Unfortunately, a JNI call crossing the boundary between native
code and the JVM has a considerable runtime overhead compared to a call that does
not cross this boundary. Because UDFs are typically written to process an individual
tuple or a row at a time, a naive implementation that simply invokes the UDF through
JNI for each row incurs this overhead for each row.

Previous solutions to combine UDF-centric frameworks with native execution either
reimplement the entire software stack in native code (e.g., TupleWare [62]) or force the
user to write UDFs directly in C (e.g., Impala [165]). Consequently, they forego a large
amount of existing code and sacrifice interoperability with JVM-based languages. In
this chapter, we aim to investigate how to preserve interoperability with the JVM and
optimize execution of Java-based UDFs inside a native code environment.

A rather obvious remedy is to amortize the overhead of the JNI call over more than one
row, i.e., instead of invoking the UDF for one row at a time, a single JNI call processes
a batch of rows. We call such a batch a stride and this form of UDF invocation strided
execution. Existing systems (e.g., Vertica [170]), require users to program against a
specific interface to enable strided execution of UDFs that operate on a single row at a
time. In contrast, our goal in this chapter is to execute scalar UDFs in a strided fashion
transparently without exposing a new interface to the user writing the UDF.

4.2. Contributions

In this chapter, we describe how efficiently execute arbitrary scalar Java UDFs in a data
processing engine written in C++ without the overhead of executing the UDF over JNI.
Specifically, we make the following contributions.

(1) We describe how to use just-in-time (JIT) compilation of a strided execution wrap-
per to move the critical loop that invokes the scalar UDF from the C++ engine into
an embedded JVM. Additionally, we use Java’s direct byte buffers to pass data be-
tween the engine and the JVM without creating unnecessary copies in many cases.
We implement these techniques in the research prototype Wildfire [26], which in-
tegrates a C++ columnar engine with Spark (Section 4.4).

(2) We compare our approach of strided execution inside an embedded JVM against
executing the UDF directly in Spark or executing an equivalent SQL predicate
without a UDF (Section 4.5).
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(3) Additionally, we describe how to compile Java UDFs directly to machine code
and dynamically link them with the Wildfire engine, in order to avoid the JVM
altogether (Section 4.6).

Our evaluation shows that executing Java UDFs inside an embedded JVM in Wildfire
is consistently faster, at least 1.12×, than executing them in Spark. The overhead of
a UDF-based execution is small. Evaluating a predicate using a UDF is 1.27× slower
than an evaluating an equivalent SQL predicate without a UDF. Furthermore, we find
that strided execution inside an embedded JVM is generally faster than compiling Java
UDFs to machine code, and comparable to hand-written code. Overheads compared to
hand-written versions are due to constraints of the Java programming model, e.g., that
Java strings are immutable.

4.3. Background

In this section, we briefly discuss how Java UDFs are represented in Spark, quantify
the overhead of JNI calls, and describe Wildfire, the research prototype we use for our
analysis.

4.3.1. Scalar UDFs in SparkSQL

Users have to register UDFs with Spark before referring to them in SparkSQL [20]
queries, as shown below in Listing 4.1.

var offset = 10
sqlContext .udf. register (" add_offset ", (i: Int) => i + offset )
sqlContext .sql(" SELECT add_offset (i) FROM table"). show ()

Listing 4.1: SparkSQL UDF registration and usage.

Typically, SparkSQL UDFs are specified as Scala lambda functions, which are closures,
i.e., they capture any free variables used in their definition. In the example above, the
add_offset UDF adds to its input the value in the variable offset that is specified
outside of the UDF. If a captured variable is mutable, such as offset above, and its
value changes between SparkSQL queries, each query will use the latest value. This
property can be used to configure more complex UDFs, e.g., machine learning models.

Internally, Scala lambda functions are represented as anonymous Java classes. List-
ing 4.2 below shows the class definition of the add_offset UDF that is generated by
the Scala compiler.
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public final class SparkProgramm$$anonfun$run$1
extends scala. runtime . AbstractFunction1$mcII$sp
implements scala. Serializable {

public SparkProgram$$anonfun$run$1 (scala. runtime . IntRef );
public final int apply(int );
...

}

Listing 4.2: Lambda function class definition.

We want to point out the following details. First, free variables are captured by the
UDF by passing them as an argument to the class constructor (line 4). The variable
offset is represented internally by the Scala compiler as an IntRef type because it is
mutable and captured by a lambda function. Consequently, changes to offset outside
of the UDFs are visible when the UDF is evaluated. If offset were immutable, it would
be passed as a simple primitive int type and would be captured by value.

Second, the actual lambda function is executed by calling the apply method of the
class (line 5). It adds the value that is passed as an argument to the method to the value
of offset which was captured by the class constructor.

Finally, note that the name of the UDF, add_offset, is not stored inside the Java
class. The class name has no connection to the UDF’s name.

4.3.2. The Java Native Interface

To facilitate interoperability between Java and code that does not run on the JVM, the
Java specification defines the Java Native Interface (JNI) [234]. The JNI provides an
API to start a JVM, to create and manipulate Java objects inside it, and to execute
Java methods on these objects. However, as Figure 4.1 shows, executing Java methods
via a JNI call incurs a significant overhead. In order to highlight the JNI overhead, we
use a Java method that performs the least possible amount of work, i.e., by returning
a constant integer. We invoke the method one billion times from a loop in C++. The
figure shows that implementing the loop in C++ code and calling the method via JNI
(dashed red line) is two orders of magnitude slower than implementing the complete loop
in Java and, thus, avoiding the JNI call altogether (dotted green line).

In order to reduce this overhead, we must move the loop from C++ into the JVM.
To this end, we break up the loop into strides. We loop over the strides in the C++
code and execute one JNI call per stride. Instead of calling the Java method directly,
we invoke a wrapper method that loops over the rows of a stride (solid blue line). As
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Figure 4.1.: Calling a method through JNI compared to calling a method directy in Java.

we can see, a comparatively small stride size of 10000 rows effectively amortizes the JNI
call overhead. Given the low computational complexity of the UDF, this value presents
an upper bound on the stride size required to amortize the cost of JNI calls.

4.3.3. Wildfire

Wildfire [26] is a research prototype of a distributed, hybrid transactional and analytics
(HTAP) system. It is designed to handle very high rates of OLTP traffic while, at the
same time, supporting OLAP queries on the latest data.

4.3.3.1. System architecture

The Wildfire architecture [26], shown in Figure 4.2, leverages Spark as a front end for
analytical queries. It takes advantage of the existing ecosystem for big data analytics,
machine learning, and graph processing. Users can submit analytical queries to Wildfire
using SparkSQL or Spark’s DataFrame API. The Wildfire engine speeds up analytical
queries (solid arrows in Figure 4.2), handles OLTP traffic (dotted arrows), and provides
access to newly ingested data before it is stored in the shared file system through a
background process (dashed arrows).

In order to move computation to the data, SparkSQL plans are pushed down to the
Wildfire engine as much as possible. The well-defined semantics of SQL make this process
fairly straightforward, with the exception of UDFs because they allow the execution of
arbitrary code. Executing UDFs outside of the Wildfire engine moves the computation
away from the data and leads to costly data transfers. Therefore, it is desirable to also
move the execution of UDFs from the Spark front end to the Wildfire back end as part of
the plan push-down. However, there’s a conflict of implementation languages. SparkSQL
UDFs are typically written in Scala whereas the Wildfire engine is implemented in C++.
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Figure 4.2.: Wildfire architecture.

4.3.3.2. Query engine

Wildfire uses a columnar query engine similar to DB2 with BLU acceleration [260]. It
executes queries in a pipelined [208], block-at-a-time [38] fashion. The operator tree of
a query is split into individual pipelines. Each pipeline scans a single input table and
consists of operators that perform filters, hash table probes for joins, aggregations, etc.
Furthermore, pipelines operate on strides of rows. Each operator consumes strides of
rows consisting of one or more input columns and produces one or more output column
strides. An input stride is fully consumed by a pipeline before the next input stride is
processed.

4.3.3.3. Data storage and representation

On disk, data processed by Wildfire is stored as Parquet files [312]. The columnar
representation of the Parquet format is kept during execution, i.e., the data of each
column is stored as a contiguous memory region. Fixed-sized values are simply stored
as an array. Variable-sized values are stored using two data structures, as illustrated
in Figure 4.3. A fixed-sized array contains offsets into a variable-sized auxiliary buffer.
In this auxiliary buffer, each value is prefixed by its length. We refer to the fixed-sized
arrays collectively as input/output buffers.

Because the size of input/output buffers does not change during the execution of
different blocks of the same query, they are only allocated once at the beginning of the
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execution of the query and then reused. Wildfire reads the data of each block into the
same input buffer. Similarly, the memory region allocated for the output buffer is also
reused. However, memory allocated for auxiliary buffers is not guaranteed to be reused
because the size of the buffer can change from one stride to the next due to variable-
sized values. When a stride’s auxiliary buffer has a larger size than the previous one,
the memory is reallocated for that buffer instead of reusing the one from the previous
stride.

4.4. UDF execution in an embedded JVM

We focus our analysis on executing SparkSQL UDFs inside an embedded JVM on all
Wildfire engine nodes. An overview of this process, and some of the necessary steps,
are shown in Figure 4.4. Notably, we have to transfer the UDF’s bytecode and its class
dependencies to the engine nodes when the UDF is registered in Spark. We inject the
bytecode into the embedded JVM, generate and compile a strided execution wrapper
for the UDF, and register it under the name of the UDF. When the UDF is called
inside a SparkSQL query, we also need to transfer the current instance of the generated
UDF class to execute the UDF with the correct state. During the UDF’s execution, we
need to pass data from the engine’s data buffers to the embedded JVM. These steps are
described in more detail in the following sections.

4.4.1. Bytecode extraction and transfer

As a first step, we have to transfer the bytecode of the UDF class and all its depen-
dencies to the Wildfire engine nodes when the UDF is registered in Spark. Given their
class names, the bytecode of these classes can be retrieved as resources from the Java
classloader. Once retrieved, we parse the bytecode to enumerate all referenced types,
and repeat this process recursively. Rather than computing a complete transitive closure
of all referenced types, we stop the recursion when we encounter a Java or Scala com-
mon type, as we do not want to transfer them. Java types are present in the embedded
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JVM by default and we also unconditionally load the Scala language library into the
embedded JVM.

4.4.2. Bytecode injection

Once the bytecode of the UDF and its dependencies has been received by a Wildfire
engine node, we have to make the embedded JVM aware of it. The JNI provides the
function DefineClass to inject a class into a JVM. However, once defined, a class with a
particular name cannot be changed. This poses a potential problem, as UDFs defined in
the Spark front end can reuse the class names of previous UDF classes. For example, the
lifecycles of the Spark front end and the Wildfire engine nodes are independent, and a
user could change the implementation of a UDF between different Spark jobs. Similarly,
multiple users may use different UDFs with the same Java class name.

Fortunately, different classes with the same name can be isolated in a JVM if they
are loaded from different class loaders. Class dependencies, and the strided execution
wrapper described below, must be loaded from the same class loader as the UDF class
itself. We, therefore, inject the bytecode of the UDF and its dependencies into the
embedded JVM by initializing a custom class loader with a mapping of class names to
byte arrays containing the respective bytecode as described in the previous section. This
class loader can define classes from the stored bytecode as they are loaded by the JVM.

To support UDFs with the same name from different Spark front end session, we have
to store a reference to the UDF-specific class loader in a session-specific engine catalog.
When a session is terminated, or the UDF is otherwise unregistered from the engine, the
class loader can be released and garbage-collected. However, in our prototype, we store
it in a global session catalog for simplicity.
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4.4.3. Passing data

As described in Section 4.3.3.3, input/output buffers are fixed-size, contiguous memory
regions. For variable-sized values, another contiguous memory region is used as an
auxiliary buffer.

The JNI can wrap memory regions inside a Java direct ByteBuffer object. The contents
of this byte buffer can be accessed from Java classes with typed getter and setter methods,
e.g., get to read a 8-bit byte or setInt to write a 32-bit integer. The JVM will make
a “best effort” to avoid unnecessary data copies when accessing the contents of direct
byte buffer [235]. By wrapping input/output buffers, as well as auxiliary buffers, inside
byte buffers, we can pass the data processed by a UDF as opaque memory blocks from
the Wildfire engine to the embedded JVM, minimizing JNI call overhead as well as
unnecessary copies. Inside the JVM, input buffers that wrap primitive data types are
accessed using the typed getter methods and are essentially treated as typed arrays.
Buffers that wrap variable-sized values, e.g., strings, need to construct a Java object
from the data contained in the auxiliary buffer. Unfortunately, this object construction
requires the data to be copied at least once into a temporary Java byte array.

Because Wildfire reuses the input buffers and replaces their contents during the ex-
ecution of subsequent blocks of a single query, they only have to be wrapped once as
a direct byte buffer for each query. Similarly, output buffers only have to be wrapped
once. However, as stated in Section 4.3.3.3, auxiliary buffers for input and output are
not guaranteed to be reused. Therefore, they have to be wrapped within new direct byte
buffers for each query block.

4.4.4. Strided execution

To overcome the overhead associated with JNI calls for each input tuple, we automati-
cally generate the Java code for a custom strided execution wrapper for each UDF when
it is registered, compile it using the Janino compiler [325], and inject it into the UDF-
specific class loader. We need to distinguish two cases. For fixed-size outputs, only one
JNI call per stride to the wrapper is necessary. For variable-sized outputs, multiple calls
may be necessary if the output exceeds the allocated size of the auxiliary buffer.

The fixed-size version of the wrapper follows the template shown in Listing 4.3. It
exports a standardized method call, which takes a UDF class instance, the number of
rows, and the input/output and auxiliary buffers as parameters. The wrapper iterates
over the input rows and calls the apply method of the UDF class for each input tu-
ple, unpacking the input byte buffers in the process using the appropriate typed getter
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public class StridedExecutionWrapper {
public static void wrapUdf (

UdfClass udfInstance ,
int numRows ,
ByteBuffer output ,
ByteBuffer auxiliaryOutput ,
ByteBuffer [] inputs ,
ByteBuffer [] auxiliaryInputs ) {

for (int i = 0; i < numRows ; ++i) {
output .putX( udfInstance .apply(

inputs [0]. getX (),. . .,inputs [N]. getX ()));
}

}
}

Listing 4.3: Strided UDF wrapper template.

methods, i.e., getX in line 10. The output is then stored in the output buffer using
the appropriate setter method, i.e., putX in line 10. Note that the example assumes
that input types are primitive; if strings are used, a temporary String object needs to
be constructed from the auxiliary buffer. This process is omitted in the template of the
wrapper.

The variable-sized version extends the template in Listing 4.3 to handle multiple in-
vocations, and accept and return internal state for each invocation. The state consists
of the index of the last processed row in the current stride and the result of the last
UDF invocation wrapped inside a Java object. It is used as a signal that the engine
has to resize the auxiliary buffer and is otherwise opaque to the Wildfire engine. In our
prototype, we initialize the auxiliary buffer with the size of the largest buffer seen so far
since the start of the query, and double its size whenever a stride exceeds it.

Figure 4.5 illustrates this process using an example where the auxiliary buffer needs
to be resized once to fit the results of the UDF. Initially, the wrapper is invoked with an
empty state, i.e., passing null to it. The wrapper then loops over input rows as shown
in Listing 4.3. If adding the result of the current row to the auxiliary buffer would exceed
its capacity, the row’s index and the current result is stored in the state object which
is returned to the engine. The engine then extends the memory region containing the
output auxiliary buffer, wraps it inside a new direct byte buffer, and calls the wrapper
again with the previously returned state, i.e., the previously computed result of the UDF
and the index of the corresponding row. The wrapper adds the stored result to the new
auxiliary buffer and continues processing of the block after the row stored in the state

144



Engine JVM

UDF operator

UDF operator

UDF wrapper

UDF wrapper

UDF method

UDF method

empty state (null)

input t1

result r1

Process additional tuples

input ti

result ri

opaque state (row i, result ri)

Resize auxiliary buffer

opaque state (row i, result ri)

input ti+1

result ri+1

Process additional tuples

input tn

result rn

empty state (null)

Figure 4.5.: Control flow for variable-sized outputs.

object. Once all rows have been processed, the wrapper signals the end of processing by
returning an empty state.

4.4.5. Detailed architecture

Figure 4.6 depicts our architecture to execute UDFs in an embedded JVM in detail. The
workflow is broken down into three parts, which are implemented by three operators
evaluated by the Wildfire engine.

4.4.5.1. Register UDF operator

The first operator is invoked by the Spark front end when the UDF is registered. On
the Spark front end, we retrieve the UDF bytecode from the Spark class loader, parse
it for dependencies, retrieve the bytecode of dependent classes, and transfer it over the
network to the Wildfire engine nodes. The Register UDF operator accepts the bytecode
of all involved classes and injects them into the embedded JVM using a UDF-specific
class loader. It then compiles a strided execution wrapper for the UDF and injects it
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into the JVM. Finally, a reference to the strided execution wrapper is stored under the
UDF’s name in the engine’s catalog.

4.4.5.2. Register UDF instance operator

The Register UDF instance operator is invoked by the Spark front end when a UDF
is encountered in a SparkSQL query. On the Spark front end, we serialize the UDF
instance and all captured variables using the Java serialization API. The serialized data
is then transferred over the network to the Wildfire engine nodes. The Wildfire operator
deserializes the UDF class instance using the UDF-specific class loader and stores it
under the UDF’s name in the engine’s catalog.

4.4.5.3. Evaluate UDF operator

Finally, the Evaluate UDF operator is inserted into the operator tree constructed by the
Wildfire Catalyst component to evaluate a SparkSQL query. When it is invoked on the
first query block, it wraps the engine’s input/output buffers as Java direct byte buffers.
It also wraps auxiliary buffers for each block if necessary. The operator retrieves the
UDF class instance and the UDF-specific strided execution wrapper from the engine’s
catalog and calls the wrapper, passing the UDF class instance and the input/output and
auxiliary buffers as required. For variable-sized outputs, the wrapper is called until the
input has been processed entirely.

4.4.6. User-defined types

In our prototype, we support UDFs with primitive types and strings as parameters. As
stated in Section 4.4.3, primitive types can be accessed from Java’s direct byte buffers
without making an extra copy. However, to process string parameters, we need to
construct a Java String object and also copy the data into a Java byte array.

Similarly to string parameters, user-defined types (UDTs) also require us to create an
object of that type. If the UDT can be decomposed into a fixed number of primitive
types or strings, constructing it is a straightforward task that can be accomplished by
calling an appropriate constructor. Thus, the cost of supporting such simple UDTs is
similar to supporting strings, i.e., creating the object and copying the data internally in
the constructed instance.

A UDF parameter can also be a more complex nested data structure, containing
optional and/or repeatable components. The Parquet format, which Wildfire uses as
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its storage scheme, supports nested structures through so-called repetition and defini-
tion levels, which are stored as additional columns alongside the decomposed compo-
nents [198]. However, supporting UDTs and nested structures as UDF parameters is
outside the scope of this prototype.

4.4.7. Security considerations

Database management systems that support UDFs generally have to take measures so
that buggy or malicious UDFs cannot crash or otherwise harm the database process. A
popular technique is fencing, whereby UDFs run in separate processes and communicate
with the database through some form of interprocess communication. Running UDFs
inside an embedded JVM can provide a similar mode of separation. We assume that the
JVM implementation itself is robust, such that a UDF cannot crash it, and, therefore,
also not the process that embeds it. Instead, errors such as dereferencing null values or
buffer overflows will throw an appropriate exception. These errors can then be handled
gracefully by the calling code.

It is indeed possible to purposefully crash a JVM through the JNI interface, e.g., by
calling JNI functions with parameters of the wrong type. However, we can reasonably
guard against this contingency since we only call our runtime-compiled UDF wrapper,
which has a fixed signature, and not arbitrary methods.

Another consideration is the execution of UDFs that do not crash the database process
but are otherwise malicious, e.g., by accessing the file system or opening a network socket.
To guard against such UDFs, we can use Java’s security manager mechanism [236] to
restrict access to specific Java APIs. A UDF that exceeds the permissions set by the
security manager will throw an exception which can be handled by the calling code.
However, such behavior is currently not implemented in our prototype.

4.4.8. Summary

In this section, we showed how to execute a SparkSQL UDF inside an embedded JVM in
a strided fashion, in order to reduce the JNI call overhead. Specifically, we can automati-
cally generate a strided execution wrapper, which supports fixed-sized and variable-sized
inputs and outputs, as well as primitive types and arbitrary Java objects. Furthermore,
by wrapping the Wildfire engine input/output buffers in Java direct byte buffers, we can
reduce data copies between the engine nodes and the embedded JVM, especially if the
UDF works on primitive types.
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4.5. Evaluation

In this section, we evaluate the techniques described in Section 4.4 using a set of queries
containing scalar UDFs, which are representative of different use cases and resource
requirements. Our analysis focuses on the effect of UDF execution on query performance,
and excludes other influences, such as disk I/O costs. This is a fair evaluation since many
data analysis workloads consist of multiple Spark tasks and intermediate results are kept
resident in memory to improve performance [345]. Therefore, we devise a number of
microbenchmarks that model UDFs with different computational requirements, ranging
from simple UDFs that are bound by data movement, to more complex UDFs that
are compute-bound. We also investigate the effect of the Java type system, i.e., using
primitive types vs. Java objects, on UDF performance.

Specifically, we use a simple range predicate to evaluate the cost of UDF invocation
of UDFs that are bandwidth-bound; a fixed-point iteration to evaluate compute-heavy
UDFs; a word length UDF that takes a variable-sized Java object as input; and an upper
case UDF, that additionally produces a variable-sized Java object as output.

4.5.1. Test system and setup

Before discussing the evaluated UDFs in detail, we want to describe our test environment
and experimental setup. Our test machine runs Ubuntu 16.04 LTS and the Oracle JDK
112. Every experiment is executed on a system with four Intel Xeon X7560 processors
running at 2.27 GHz. Except for a thread scaling experiment described in Section 4.5.6,
our experiments execute on a single thread. The machine contains 512 GB of memory.
On disk, the data is stored in uncompressed Parquet files, using a RLE/PLAIN encoding.
Note that on-disk data is accessed from the Linux buffer cache. We observed virtually
no data being read from the disk during the execution of the experiments. Also note
that we use full table scans and do not build any indexes on the data.

We run each experiment ten times and discard the first result. We report the mean
value of the run times of the remaining nine results. We also show one standard deviation
as error bars. We measure the wall-clock time required to issue the SparkSQL query and
materialize the result in the Spark front end. In particular, we include the time required
to transfer the UDF class instance from Spark to Wildfire, including serialization and
deserialization, because this cost is incurred for each query using the UDF. However,
we do not include the time required to transfer the bytecode of the UDF class and its
dependencies, nor the compilation of the strided execution wrapper, as these two steps
are only performed during the registration of the UDF. In general, we compare the
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Table 4.1.: UDF stride sizes.

UDF Stride size
Range 4096
Distance 512
Word length 1024
Upper case 1024

execution time of the strided execution wrapper to two baselines, (1) the execution of
the SparkSQL query in Spark 2.0.2 without the involvement of Wildfire, and (2) the
unstrided execution where we invoke the original UDF method for each tuple through
JNI. We report normalized wall-clock time relative the execution of the queries in Spark,
i.e., our first baseline.

For each UDF, we have determined the minimal required stride size, so that doubling
it does not yield a further improvement. We list these stride sizes for each UDF in
Table 4.1. Note that determining the correct stride size for a query does not only
depend on the UDF but also on other aspects of the execution environment, such as
cache sizes and tuple width. Such an analysis is outside of the scope of our prototype.

4.5.2. Range UDF

The first query uses a range predicate on an integer column. Such a predicate can be
expressed natively in SQL, allowing us to evaluate the overhead of formulating it as an
UDF instead. Furthermore, by setting the range so that all values are selected, we can
also measure the total cost of UDF invocation.

Consequently, we evaluate three versions of the query on Wildfire which are shown
in Listing 4.4. The first contains no predicate, i.e., it selects all rows from the table.
The second version formulates the range query as a standard SQL predicate. The third
version encapsulates the range predicate inside a UDF. Each version of the query has
a selectivity of one since the first version does not contain any predicate. Therefore, in
order to minimize the amount of data that is transferred from the Wildfire engine nodes
back to the Spark front end, and highlight the cost of the UDF, we wrap the results of
each query in an aggregation function.

This UDF is designed to measure UDF invocation overhead. It has a low computa-
tional load, i.e., the influence of UDF invocation is maximized compared to the actual
computation. The difference between the run times of the first and second query yields
the cost of applying the predicate as a native SQL expression, whereas the difference
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SELECT sum(a), count(a) FROM R

(a) No predicate

SELECT sum(a), count(a) FROM R WHERE min < a AND a < max

(b) SQL predicate

-- def filter (a: Int , low: Int , high: Int) = low < a && a < high
SELECT sum(a), count(a) FROM R WHERE filter (a, min , max)

(c) UDF predicate

Listing 4.4: Range predicate queries.
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Figure 4.7.: Run time of the strided execution of the range UDF, compared to execu-
tion in Spark and unstrided execution, and equivalent SQL queries; single-
threaded execution.

between the second and third query yields the cost of formulating the predicate as a
UDF compared to native SQL.

We execute the queries on a 10 GB table with one column containing approximately
2.5 billion random integers. For the strided execution we use a stride size of 4096, which
is a conservative value. The results are shown in Figure 4.7. As stated, the UDF is com-
putationally lightweight, i.e., the difference between the query without a predicate and
with a SQL predicate is small. Consequently, there is an order of magnitude difference
between strided and unstrided execution. Evaluating the predicate inside a Java UDF
is 1.27× slower than evaluating it directly in SQL. However, evaluating the UDF inside
an embedded JVM in Wildfire is 1.54× faster than evaluating it in Spark directly.
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Figure 4.8.: Run time of the distance UDF query.

4.5.3. Distance UDF

The second query, shown below in Listing 4.5, contains an example of a computation-
ally heavy UDF. It uses the inverse Vincenty’s formulæ [331] to compute the distance
between two points on an oblate spheroid, such as Earth. This algorithm contains sev-
eral trigonometric functions and is based on a fixed-point iteration. While it can be
implemented directly in SQL using recursive common table expressions, it is much more
straightforward to implement inside a UDF.

-- distance : UDF implementing Vincenty ’s formula
SELECT sum(lat), count(lat) FROM R
WHERE distance (lat , lon , 0, 0) > 100000;

Listing 4.5: Computationally intensive distance UDF query.

We evaluate the UDF on a 1 GB table containing approximately 64 million random
points uniformly distributed on a sphere. The UDF computes the distance between each
point and a point we arbitrarily choose at latitude and longitude 0◦. On average, the
UDF requires five iterations to converge. To eliminate data transfer overheads, we again
wrap the results in an aggregation function, and minimize its overhead by choosing the
selectivity of the query so that no point is actually selected. Note that the distance
UDF processes forty times fewer rows and ten times less data than range UDF. For the
strided execution we use a stride size of 512.

The results are shown in Figure 4.8. Contrary to the range query, the JNI call overhead
is dwarfed by the computational complexity of the UDF itself. Consequently, unstrided
execution is only 1.2× slower than strided execution. In general, the necessity of strided
execution to achieve good performance diminishes as the computational load of the UDF
increases. The UDF runs 1.12× faster in Wildfire than in Spark.
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Figure 4.9.: Run time of the word length UDF query.

4.5.4. Word length UDF

The third query, shown below in Listing 4.6, returns the length of an input string.

-- def length (s: String ) = s. length
SELECT sum( length (word )), count(word) FROM R

Listing 4.6: Word length UDF query.

The query evaluates the execution of UDFs that operate on Java objects as input, using
variable-sized strings as an example. Unlike primitive types, which can be read directly
from the direct byte buffers used to pass data between the engine and the embedded
JVM, Java objects used as inputs to the UDF first need to be constructed. This involves
copying the data from the direct byte buffer into the data structures that back the Java
object, which increases the data movement cost of the UDF.

We evaluate the UDF on a data set of about 80 million randomly generated variable-
sized words. The word length follows a Poisson distribution with λ = 9.7, the average
length of distinct English words [291]. The approximate size of the data set is 1 GB. For
the strided execution we use a stride size of 1024.

The results of this experiment are shown in Figure 4.9. As the UDF is also compu-
tationally lightweight, there is a significant difference, about a factor of 4.5, between
strided and unstrided execution. However, due to the memory access entailed in con-
structing String objects, which is required in both versions, the difference is not as big
as for the range query. The UDF runs 1.20× faster in Wildfire than in Spark.

4.5.5. Upper case UDF

The final query, shown below in Listing 4.7, transforms an input string into upper case.
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-- def upper(s: String ) = s. toUpperCase
SELECT count(upper(word )) FROM R

Listing 4.7: Upper case UDF query.
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Figure 4.10.: Run time of the upper case UDF query.

This query evaluates the generation of variable-sized auxiliary output buffers. Since
the UDF is opaque to the Wildfire engine, the size of the auxiliary buffer is not known
when processing of a block starts. The engine needs to resize the buffer when the actual
output exceeds the size estimation. As stated in Section 4.4.4, we use a simple strategy
that always allocates the size of the largest output block seen so far since the start of
the query, and doubles the size estimation if a block exceeds it.

We evaluate the UDF on the same data set used in the word length UDF and show the
results in Figure 4.10. Compared to the word length UDF, the upper case UDF requires
two additional passes over the string, one to transfer its content into upper case and a
second to write the string as an array into the output auxiliary buffer. Consequently, the
UDF is dominated by String data copies, and each of the strided, unstrided, and Spark
versions take about twice as long as the previous UDF (not visible due to normalization
in Figure 4.10).

4.5.6. Thread scaling

So far, we have run all UDFs in a single-threaded environment. In a final experiment,
we want to evaluate how our embedded JVM approach scales with multiple threads.
Our test system is a four-way NUMA machine with eight physical cores per socket that
support hyper-threading. In total, there are 64 logical cores in the system. We run the
range UDF query from Section 4.5.2 in Wildfire and increase the number of threads from
one to 64.
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Figure 4.11.: Scaling with multiple threads.

We show the results of two versions of the range query in Figure 4.11. Dots represent
the query where the predicate is evaluated directly in SQL and triangles represent the
query with a UDF predicate. For each version we show the speedup compared to single-
threaded execution. As we can see, the system scales almost linearly with the number
of threads. In particular, the speedup of the query with the UDF predicate closely
follows the query with the SQL predicate, indicating that the embedded JVM does not
introduce overheads that limit parallelization.

The drop-off in the curve between 32 and 64 threads is caused by the way data is
partitioned on disk into Parquet row groups. During import, Wildfire partitioned the
10 GB into 161 row groups. Most of these row groups are 64 MB large, except for the
first and the last which are smaller. Each row group is processed by a different thread in
a work-stealing fashion. Since 161 is almost evenly divisible by 32 but not by 64, some
threads are starved of data when we use 64 threads. Half of the threads process three
row groups whereas the other half only process two.

4.5.7. Summary

Our approach of embedding a JVM inside the Wildfire engine nodes can effectively
bridge Java code and native code. A naive execution strategy, which uses a JNI call to
invoke the UDF for each tuple, incurs a large overhead for computationally lightweight
UDFs. The key to overcome this overhead is to compile a UDF-specific strided execution
wrapper at run time and move the critical loop from outside the JVM into it. The strided
execution wrapper has the additional benefit of allowing us to pass opaque data buffers
between the Wildfire engine and the embedded JVM using direct byte buffers, thereby
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Figure 4.12.: Compiling Java UDFs to machine code.

further reducing JNI call overhead to handle UDF arguments. The benefit of strided
execution diminishes as the computational complexity and memory bandwidth of the
UDF increases.

4.6. Compilation to machine code

The range query shows that the execution of a UDF inside an embedded JVM still
incurs a small but significant overhead compared to the execution of the semantically
equivalent SQL query. In this section, we investigate whether it is possible to improve
the performance of Java UDFs by compiling them to machine code at run time. The
approach is sketched in Figure 4.12. It works as follows: 1 When the Spark front
end registers a UDF, we first translate the Java bytecode into LLVM [174] intermediate
representation (IR). For this step, we use the BugVM compiler [49], which is described in
more detail below. 2 Based on the Java UDF, we also generate LLVM IR for a wrapper
function that calls the UDF for each tuple. 3 We then link, optimize, and compile the
UDF and wrapper IR fragments to object code using LLVM’s MCJIT. 4 The object
code is dynamically loaded by Wildfire and the wrapper is executed for each block.

4.6.1. BugVM

BugVM is an ahead-of-time compiler for JVM-based languages [49]. It provides a com-
piler that translates Java bytecode to LLVM IR and a custom implementation of the
Java runtime environment. BugVM leverages LLVM to produce machine code from the
generated IR. This machine code is linked against the custom Java runtime resulting in
a fully contained native binary.

The BugVM compiler uses Soot [327] to translate Java bytecode into a typed three-
address IR in static single assignment (SSA) form. Instead of following the JVM’s
stack-based semantics, this IR is already register-based and can be easily translated to
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Figure 4.13.: Performance of Java UDFs that are JIT-compiled to machine code.

LLVM IR. Special JVM bytecode constructs, e.g., invokevirtual to call a polymorphic
method, are implemented as functions for which BugVM provides the implementation.
These special functions are inlined by the LLVM optimizer when appropriate to improve
performance. The BugVM JVM uses the Boehm-Demers-Weiser garbage collector [31,
32] for memory management.

4.6.2. JIT-compiled UDF performance

Figure 4.13 shows the performance of UDFs that are JIT-compiled from Java bytecode
to machine code, and compares them against strided execution inside an embedded
JVM, as well as against versions of the UDF hand-written in C++ that are statically
linked with the Wildfire engine. To allow comparison with the measurements reported in
Section 4.5, we again normalize the wall-clock time to the execution time of the queries in
Spark. We exclude the compilation time from our analysis because it is a one-time cost
incurred when the UDF is registered with the engine. Note that each execution strategy
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Input : Input buffer input with strings.
Output: Output buffer output of string lengths.

1 for i← 1 to size of input stride do
2 javaString ← CreateJavaString(inputi)
3 outputi ← WordLengthUdf(javaString)
4 CheckForJavaException()
5 ReleaseJavaObject(javaString)
6 end

Algorithm 4.1: Word length UDF wrapper.

evaluates the UDF in a strided fashion, using the stride sizes reported in Section 4.5.1
for each UDF.

The results clearly indicate overheads in the embedded JVM approach, as the UDFs
which are hand-written in C++ outperform the Java UDFs executed inside the JVM.
The word length UDF shows the biggest difference, a reduction by a factor of 2.1.
However, as we will see below, the hand-written version exploits knowledge about the
specific task performed by the UDF, as well as the storage scheme used by Wildfire, to
achieve this speedup. The JIT-compiled version of the computationally heavy distance
UDF is as fast as the hand-written version and 1.75× faster than executing the UDF
in an embedded JVM. In contrast, the hand-written versions of the range UDF and the
upper case UDF are only marginally faster than executing the UDF inside the embedded
JVM, whereas JIT-compiled versions are considerably slower. We discuss the reasons
for this slowdown and possible remedies in the next section.

4.6.3. String construction optimizations

We now describe optimizations that we can apply to JIT-compiled machine code UDFs,
using the word length UDF as a case study. The wrapper executing the UDF on a single
stride is shown in Algorithm 4.1 in pseudocode.

A few operations deserve scrutiny. First, for each input string, we need to construct
a Java String object (line 2). In Java, each string is represented by its own immutable
String object, which in turn contains a reference to a Java Char array. Thus, to create a
Java string from a string in a Wildfire input buffer, a data copy is needed in addition to
two object allocations, one for the String object and one for the referenced Char array,
as shown in Figure 4.14a. Second, after the UDF has been called, we need to check if
the UDF raised a Java exception (line 4). Finally, we have to explicitly release the Java
string object that was allocated outside of the JVM, otherwise it cannot be reclaimed
by the garbage collector (line 5).
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Figure 4.14.: Java String creation and optimizations.

The hand-written UDF is much simpler. Most conveniently, the length for each word
is already stored in the auxiliary buffer, as shown in Figure 4.3 in Section 4.3. Thus, the
Wildfire engine can evaluate the UDF without accessing the contents of the string at
all. Wildfire also does not have to do any input-specific error handling. In other words,
lines 2 to 5 are replaced by just copying the word length value from the auxiliary buffer
to the output buffer.

In order to address the overheads in the generated wrapper, we investigate four opti-
mizations: (1) Reusing String objects to reduce object construction; (2) Modifying the
JVM’s String objects to wrap data from the engine’s input buffers to minimize data
copies; (3) Relaxing the JVM’s exception handling; and (4) Removing a memory fence
normally required by the Java memory model.

4.6.3.1. Eliminate String object construction

Since the word length UDF does not store a reference to the input string, we can reuse
the existing String object between UDF calls and simply replace the internal Char array.
This optimization saves one object allocation as shown in Figure 4.14b, and, therefore,
puts less pressure on the garbage collector. Note that this optimization requires knowl-
edge about the inner workings of the UDF and cannot be applied in general. In partic-
ular, if the UDF were to store (a reference to) the input string internally, the contents
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of the stored string would change in-between each UDF call, violating the immutability
of Java strings.

4.6.3.2. Eliminate data copies.

To eliminate the object allocation of the internal Char array, we can implement a custom
String class that wraps a string stored in a memory region outside of the JVM by storing
a pointer to it, as shown in Figure 4.14c. This also removes the need to copy the
string contents from outside the JVM into it. However, we now have to take care of
distinguishing String objects created inside Java and those that wrap a memory region
outside of the JVM. The latter are owned by the engine and cannot be automatically
reclaimed by the garbage collector.

4.6.3.3. Relax exception handling.

In general, Java UDFs submitted by Spark can have side effects, such as changing global
state or performing I/O. Consequently, we have to check for error conditions after each
UDF invocation, otherwise side effects can continue to occur after an error, resulting in
an inconsistent state of the application.

In Java, errors are typically signaled by raising an exception. If an exception was
raised inside a JNI call, it will remain active until it is explicitly cleared. Therefore,
for a general UDF, we have to check for the presence of an exception, take appropriate
measures, and clear it. However, we know that the word length UDF is free of side
effects. Furthermore, given our previous optimizations, we can also rule out an out-
of-memory error since there are no more object allocations. Hence, we can move the
exception handling code out of the loop.

4.6.3.4. Remove memory fence.

The Java memory model guarantees that final fields of objects will be correctly initialized
after an object is constructed [93, §17.5]. This guarantee, which restricts possible variable
assignment reorderings by the compiler, applies to the internal Char array of the String
object. To satisfy this guarantee in a multi-threaded environment, the compiler has to
insert a memory fence instruction after the String object has been constructed. However,
since the String object is not referenced by other code (and, therefore, also not by other
threads), we can remove the memory fence from the generated code without violating
this guarantee.
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Figure 4.15.: Effect of optimizations on JIT-compiled code for the word length UDF.

4.6.4. Effect of optimizations

Figure 4.15 shows the effect of the optimizations described above, with the original JIT-
compiled UDF without optimization and the UDF hand-written in C++ as a reference.
The measured wall-clock times are again normalized to execution time in Spark. Each
optimization is applied on top of the previous optimizations in the order they are men-
tioned above. The fully optimized UDF is almost as fast as the hand-written version.
Eliminating object allocation and data copies has the biggest effect on performance.
Further optimizations have diminishing returns.

While the exception handling code has a small influence on the performance of the
word length query, for the range query it is precisely responsible for the gap between
the hand-written and the JIT-compiled version of the query in Figure 4.13. In fact,
if we eliminate this check, LLVM’s JIT compiler produces exactly the same machine
code as for the hand-written version, which is inlined and makes use of the processor’s
SIMD instructions. For the distance UDF, there is virtually no difference between the
execution time of the JIT-compiled and hand-written version because the time required
for exception handling is negligible compared to the time spent in the UDF itself.

As we have seen, when we apply all of the proposed optimizations to the JIT-compiled
word length query, it is almost as fast as hand-written code. Unfortunately, we have
broken Java in the process because we have changed core language semantics.

4.6.5. Applicability of optimizations

The Java language specification mandates that strings are immutable. Three of the
optimizations violate this critical guarantee. The issue arises when a UDF leaks the
string reference, i.e., if it stores the reference in a global variable as part of state it
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maintains across invocations. For regular Java strings, such leaking is unproblematic
because strings are immutable. However, if we reuse the String object across UDF
invocations and exchange the underlying Java Char array, the leaked string will change
from one invocation to the next. Similarly, if we use a custom String object that wraps
a memory region owned by the engine, the leaked string also changes when the engine
modifies the memory region. Finally, if we remove the memory fence and the UDF passes
the String reference to a different thread, this thread could see the uninitialized contents
of the String object.

For the word length UDF, we can apply these optimizations safely since we know that
no String reference is leaked. In general, these optimizations are safe if the UDF is free
of side effects.

UDFs that keep state across invocations may lead to unpredictable behavior in Spark.
There is no way to directly exchange state information between Spark executors. Fur-
thermore, the result depends on how the Spark job is distributed across executors. The
same applies to the embedded JVMs in the Wildfire engine nodes.

Even without knowledge of the inner workings of the UDF, it is possible to apply
many optimizations with the help of static and dynamic code analysis. For example,
by checking the reference count of the String object after the UDF has finished, we can
verify that no String reference has been leaked and reuse the object for the next iteration.

4.6.6. Summary

As we have seen, computationally heavy UDFs that do not create objects can benefit
from JIT-compilation to machine code, leading to a performance increase by a factor of
2.1. While the Java programming model limits many possible automatic optimizations
related to object creation overheads, it is still possible to apply these optimizations
through static and dynamic code analysis. Thus, it is not surprising that the Oracle
HotSpot VM is quite good at dynamically optimizing Java code. Consequently, UDFs
evaluated inside an embedded JVM in a strided fashion achieve a performance that is
comparable to machine code for many use cases.

4.7. Related work

Most, if not all, popular database systems support UDFs to let users express an algorithm
in an imperative way. Consequently, complex UDFs are prevalent in real-word database
workloads [108]. However, common wisdom discourages the use of UDFs due to their
slow execution speed, which is caused by the impedance mismatch between declarative
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SQL queries and procedural UDFs. Whereas queries are optimized by a query optimizer,
UDFs are treated as a black box, and, in the worst case, called for every tuple.

Foufoulas et al. [82] give an overview of recent work to speed up the execution of
UDFs in database engines. They group the work into three categories: (1) systems
that translate UDFs to SQL, (2) systems that lower relational operators and UDFs to
a common IR, and (3) systems that embed an execution environment for the UDF into
the database engine. Our work falls into the third category. In the following, we discuss
the advantages and disadvantages of each approach, and how it relates to our work.

4.7.1. Translation to SQL

In this approach, a procedural UDF is translated into an equivalent SQL expression, and
SQL queries with UDFs are rewritten as plain SQL queries. Note that the UDF itself can
contain relational statements. The main advantage is that the rewritten query can now
be fully optimized by the query optimizer, which has numerous benefits: (1) It eliminates
context switches between relational execution and the UDF [72, 81, 259], (2) it avoids
the materialization of the results of SQL query called from the UDF [107], and (3) it
eliminates repeated calls to the query planner and optimizer, if a SQL query is used
multiple times inside a UDF, or if the UDF calls itself recursively [50, 71]. Furthermore,
the techniques typically do not depend on the specific UDF language [107, 259] and can
be applied to any application that embeds SQL queries [81, 107]. However, translation
to SQL is typically restricted to a pure subset of the UDF language [29, 81, 259, 353] or
to a limited set of third-party libraries [109, 278].

Froid [259] translates scalar UDFs written in T-SQL into nested subqueries, and is
integrated with Microsoft SQL Server. It supports branches and recursion but does not
support loops. The authors observe that for complex recursive or nested UDFs, the
translated SQL query can become too large for the optimizer to handle efficiently; there-
fore, they reduce the maximal depth of the generated algebraic tree. Aggify [107], which
is also prototyped on Microsoft SQL Server, translates CURSOR loops into equivalent
custom aggregates. The CURSOR can either be created inside a T-SQL UDF or in a
Java application, i.e., a JDBC ResultSet.

Duta et al. and Burghardt et al. translate PL/pgSQL UDFs with iterative [72] and
recursive [50, 71] control flow into a single SQL:1999 query with recursive common table
expressions (CTE). ByePy [81] uses the same approach to translate Python functions
with embedded SQL queries to SQL:1999 queries with recursive CTEs. ByePy supports
complex control flow (but no recursion) and a limited set of built-in Python types and
functions.
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Grizzly [109] translates Python pandas [212] code to SQL queries with nested sub-
queries. However, Python UDFs called by pandas code are shipped as is to the database
and still require the invocation of a Python interpreter. Schüle et al. [278] translate
Python pandas [212] and scikit-learn [245] code to SQL but do not support UDFs.

CLIS [353] translates Spark SQL queries containing Scala UDFs to plain Spark SQL.
Notably, it supports the capture of (immutable) free variables inside the UDF in the
same way as we do. However, it does not support arbitrary Scala code, e.g., reflection,
virtual dispatch, or user-defined types; or functionality without a built-in Spark SQL
equivalent, e.g., matrix multiplication or encryption.

4.7.2. Common intermediate representation

In this approach, relational operations, user-defined code [102] or other data processing
libraries [238, 239] are mapped internally to a unified internal representation (IR). A
query compilation framework can then apply optimization steps, across operator bound-
aries e.g., loop fusion, loop unrolling, function call inlining, vectorization, and common
subexpressions elimination [102, 238]. Furthermore, it can specialize data access to elim-
inate data conversion or copies between operations [77, 102]. However, this approach is
limited to the extend that UDF language features or third-party libraries are mapped
to the common IR [102, 238, 239].

Flare [77] is query compilation backend for Spark SQL which targets scale-up ma-
chines, with the goal of retaining Spark SQL as a popular data analysis front end while
improving the integration other data analysis frameworks, e.g., TensorFlow [5]. Flare
employs lightweight modular staging [265] in Scala to specialize the Spark SQL query and
generate a C program, which is then compiled and executed. When calling TensorFlow
UDFs, Flare specializes its internal data structures in a way that eliminates data layout
modifications or copies. Scala UDFs in Spark SQL queries need to be modified so that
they will also be specialized during query compilation However, this is a straightforward
process that can be done mechanically.

Weld [238, 239] is a common runtime for data analytics frameworks and libraries.
To integrate a system with Weld, its operations have to be reimplemented to generate
Weld IR to construct a common operator graph. The Weld runtime then applies query
compilation optimizations across the entire graph and generates an executable program
via LLVM [174]. Furthermore, the Weld runtime supports adaptive execution to switch
between branched or branch-free selection and independent or shared aggregation [238].
Weld is integrated with Spark SQL and speeds up execution of Scala UDFs in Spark
SQL queries by vectorizing UDF calls and eliminating data conversions [239].
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Babelfish [102] combines relational operators written in Java with polyglot UDFs
and executes them on the GraalVM [233]. It relies on Truffle [337] to support UDF
languages such as Python or JavaScript, in addition to Java UDFs. Babelfish specializes
the generated code, inlines function calls, and rewrites data access operations to eliminate
data conversion and data copies between relational operators and UDFs.

4.7.3. Embedded execution environment

In this approach, the database engine includes a fully featured execution environment
for the UDF language. Both of the techniques we describe in the Chapter fall into
this category; we either embed a standard JVM in Wildfire or we link the machine
code generated from the UDF against the specialized BugVM JVM [49]. The main
advantage is that the UDF can use all of the functionality of the UDF language, including
third-party libraries [159]. However, switching between relational execution and UDF
execution incurs a large overhead, especially for scalar UDFs applied to every tuple.
To mitigate this overhead, the database engine can vectorize the execution of scalar
UDFs [83, 159, 257] or fuse multiple UDFs together [83]. The database engine also
has to copy and/or convert data between its internal representation and that of the
UDF language. Columnar database engines can sidestep in this issue, if the UDF is
able to process C-style arrays; in this case, only a small amount of metadata has to
converted [64, 83, 257]. Alternatively, both the database engine and the UDF can use
a common data representation, e.g., Apache Arrow [306]. Finally, a buggy or malicious
UDF can crash the database server. To protect against this issue, a database engine can
preprocess the UDF code [159], execute the UDF in a separate process [159], or even
inside a containerized environment [276].

AIDA [64] and Raasveldt et al. [257] integrate MonetDB [37] with NumPy [111]. Since
NumPy is an array-based programming framework, the UDF is automatically executed
in a vectorized fashion and there is no data conversion.

YeSQL [83] integrates Python UDFs with MonetDB or SQLite [296]. YeSQL applies
many of the same techniques that we use to improve scalar UDF execution. (1) It auto-
matically generates a vectorized execution wrapper; (2) it compiles the generated code
with PyPy [36], a tracing JIT compiler; and (3) it passes strings as memory buffers
to UDFs that support this representation, without copying data. Furthermore, YeSQL
fuses nested scalar UDFs, which enables PyPy to optimize longer execution traces.

Impala [165] executes Hive UDFs written in Java inside an embedded JVM one tuple at
a time. The Impala manual recommends C++ UDFs for performance reasons, stating
that C++ UDFs are often 10× faster than equivalent Java UDFs [315]. To reduce
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redundant work across multiple invocations, Impala allows the UDF to store invariant
data in a thread-safe memory area. In our implementation, a UDF can trivially replicate
this optimization by storing state inside the UDF instance.

4.8. Conclusion

In this chapter, we analyzed the overheads of executing Java UDFs within a database
engine written in native code, and which does not use the JVM. Contrary to common
belief, we find that using an embedded JVM does not necessarily lead to disastrous
performance. As expected, a strided execution pattern effectively minimizes call over-
heads commonly associated with JNI calls, and the strided execution wrapper can be
generated automatically by the engine, making the entire process transparent to users.
The necessity of strided execution diminishes as the computational load of the UDF
increases.

By using Java direct byte buffers, we can pass entire data blocks from the engine to the
embedded JVM. If the UDF uses primitive types in its interface, the data encapsulated
in these buffers can be accessed directly without incurring an additional copy. However,
Java objects in the UDF interface require the data to be copied from input buffers to the
Java object’s data structures, or from the Java object to output buffers, which dominates
UDF execution. Consequently, primitive types should be used whenever possible.

We also show that running UDFs inside an embedded JVM compares well with UDFs
hand-written in C++. JIT-compiling computationally heavy UDFs, that do not use Java
objects, to machine code, can improve performance by about a factor of two. Other UDFs
do not benefit from JIT-compilation to machine code because of the overheads associated
with the guarantees of the Java language, namely the immutability of Strings, exception
handling, and a particular memory model.

We were able to apply a number of optimization to the generated machine code because
our evaluated UDFs were free of side effects. We would argue that it is good practice to
use side effect-free functions for scalar UDFs in any case. However, we also advocate to
integrate these optimizations inside an existing JVM’s JIT compiler instead of essentially
duplicating the HotSpot VM.
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5
Conclusion and research outlook

In this thesis, we investigated how heterogeneous hardware and software impacts query
processing. The heterogeneous nature of today’s computing systems is a direct conse-
quence of efforts to continue to improve computing performance in the face of restrictive
physical constraints, and to provide data analysis tools to a wide range of users with di-
verse requirements. Thus, this heterogeneity represents a challenge to query processing
systems, but also an opportunity to continue to improve performance and democratize
data analysis. Since a thesis can only cover a selection of problems in this very broad
research area, we focused on three specific scenarios, which cover both hardware and
software heterogeneity.

5.1. Hardware heterogeneity

In Chapter 2, we conducted a survey of query processing systems which utilize both CPUs
and GPUs for query processing. We developed a classification scheme to categorize how
these systems distribute query processing tasks each processor, and reviewed techniques
to reduce the implementation complexity of such systems and to mitigate the data
transfer bottleneck. Our study revealed a key difference between computing systems with
dedicated GPUs, and those in which CPU and GPU compute units are integrated on the
same chip. Systems with a dedicated GPU, when it is connected over slow system bus,
are constrained by the data transfer bottleneck. Thus data transfers should be avoided
as much as possible, which can be achieved by offloading specialized coarse-grained tasks
to the GPU, which execute independently of the tasks assigned to the CPU. In contrast,
on systems with integrated GPUs, both CPU and GPU compute units can exchange
data frequently and access shared data structures simultaneously. A query processing
system can thus divide the workload into more fine-grained cooperative tasks and has
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more opportunities to match the characteristics of each task with the capabilities of the
CPU and GPU compute units.

However, the recent emergence of fast, coherent interconnects, such as NVLink 2.0 [225],
Infinity Fabric [241], or Compute Express Link [284] changes the status quo. These fast
interconnects reduce the difference between accessing data in main memory from the
CPU and from a dedicated GPU, and also allow both processors to access shared data
structures simultaneously, thus likely moving the trade-off from coarse-grained, inde-
pendent tasks to fine-grained, cooperative tasks. Lutz et al. have studied the effect of
NVLink 2.0 on hash joins [189, 190] and showed that the main bottleneck is shifted from
the interconnect to other resources. Consequently, the effects of fast interconnects on
other query processing tasks, e.g., aggregations, indexing, or transactional processing,
present a large and likely fruitful open research area. Furthermore, simultaneous access
to shared data structures depends on atomic operations. We believe it is worthwhile to
model the performance of atomics based on workload characteristics, and while we have
explored this topic in a Master’s thesis [279], it remains an open research question.

Modern GPUs also increasingly incorporate specialized hardware for matrix opera-
tions [30, 225], which are ideal candidates to speed up machine learning tasks in com-
plex data analysis pipelines. A heterogeneous query processing system has to take data
movement into account when assigning machine learning and other query processing
tasks to the GPU, which is an application scenario that we did not include in our sur-
vey. Alternatively, matrix cores on GPUs can be used to estimate data distributions and
correlations with machine learning-based approaches [171]. We expect the capability of
the GPU to process larger models in a shorter amount of time to lead to an improvement
of the query optimizer, in line with previous research [122, 156].

With regard to application scenarios, we noticed that most research into query process-
ing on GPUs focuses on dedicated GPUs at the expense of integrated GPUs; probably,
because their raw processing power makes them an enticing research target. However,
we would argue that integrated GPUs are becoming increasingly important, due to
their prevalence in consumer hardware [21], power-constrained mobile devices [255], and
embedded applications [290]. To the best of our knowledge, a number of important ap-
plication scenarios, e.g., hybrid transactional/analytical processing or spatio-temporal
workloads, have not yet been studied on integrated GPUs. Since, as we noted above,
integrated GPUs require a different approach to heterogeneous query processing, the ap-
plication design to handle these workloads on integrated GPUs remains an open research
question.
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In Chapter 3, we focused on a specific aspect of a heterogeneous query processing
system, its low-level operator implementation. Our goal was to let the system automat-
ically adapt its operator implementation to the processor it runs on, instead of having
to fine-tune it manually to multiple target processors. To this end, we performed an
extensive performance analysis of two common data processing operators, selection and
hash aggregation, on various multi-core CPUs, GPUs, and an Intel Xeon Phi processor.
A key insight of our work is that GPUs (and also the Xeon Phi) are very sensitive to
specific implementation parameters; so much so that previously derived heuristics from a
single GPU micro architecture do not yield good results on other GPUs. Even on GPUs
created by the same manufacturer, the optimal implementation parameters strongly
depend on the particular micro architecture, and wrongly optimized implementations
incur large performance penalties. Based on this analysis, we developed two algorithms
to learn fast operator implementations at runtime. Here, our main insight is that it is
essential to restrict the search space by incorporating prior knowledge about the target
processor, in order to efficiently find a fast operator implementation.

At the end of Chapter 3, we sketched how we would integrate our algorithms into a
complete query compressing system which adapts its operator implementation to dif-
ferent target processors. Building such a system presents many interesting research
challenges. One open task is to formulate a set of micro benchmarks to characterize
relevant processor properties, in order to restrict the search space without relying on an
extensive analysis, as we have done. Another open question, which we started to inves-
tigate in a Master’s thesis [169], is how to use the data we gain during the evaluation of
various operator implementations during query processing, to build or a refine a model
about the behavior of the processor.

The low-level operator implementation is only one aspect of the implementation of a
query processing system; another is the query processing model. Whereas the relative
benefits of vectorization and query compilation have been investigated on CPUs [151,
294], there is so far, to our knowledge, no systematic comparison between these process-
ing models on GPUs. We expect that the relative advantages of these processing models
depend on the type of GPU integration, since query compilation creates coarse-grained
tasks that are beneficial to on dedicated GPUs, whereas vectorization allows for more
fine-grained tasks that target integrated GPUs. Furthermore, every heterogeneous rela-
tional query processor that we studied uses the same query processing model on both
CPUs and GPUs, and also executes a physical query plan that was created by an opti-
mizer targeting CPUs. Consequently, it is an open question how to adapt the processing

169



model and query plans to different processors in a heterogeneous CPU/GPU system.
The main challenge in such a query processing system is to keep its complexity in check.

5.2. Software heterogeneity

In Chapter 4, we focused on integrating two software systems, with the overarching goal
of keeping a familiar query interface for users, while improving the speed and capabilities
of the system. Specifically, we investigated how to execute SparkSQL Java UDFs [20]
inside the C++ engine of Wildfire [26], a hybrid transactional/analytical processing
engine. Contrary to our initial expectations, executing the UDFs inside an embedded
JVM showed very good performance; it was faster than executing the UDFs in Spark
alone, and competitive to equivalent hand-written C++ code. By calling the UDFs in
a strided fashion, we eliminated call overheads between C++ code and the JVM; and
by employing Java direct byte buffers, we eliminated copies of primitive types. We also
investigated compiling Java UDFs directly to machine code but found that this approach
is often slower than running the UDFs inside an embedded JVM, especially, if they
create Java objects, such as Strings. Statically compiling Java UDFs to machine code
foregoes the runtime optimizations of the Java HotSpot VM, such as method inlining
and monomorphic dispatch [78]; it is easier to execute UDFs inside an embedded JVM
than to replicate these optimizations in a query processing system.

Since our work, the research community has formulated new approaches to combine
Java UDFs with native code written in C++. For example, TornadoVM [86] transpiles
Java bytecode to OpenCL [300], which enables the exciting capability [340] of acceler-
ating Flink UDFs [51] on multi-core CPUs, GPUs, or FPGAs. Babelfish [102] takes the
opposite approach and utilizes Truffle [337] to translate polyglot queries, in which a rela-
tional operators written in Java are combined with UDFs written in Python, JavaScript,
or other languages, to a common intermediate representation, which is then executed
on GraalVM [233]. However, the seamless integration of UDFs in different languages,
which can also be accelerated on GPUs, remains an open problem. TornadoVM still
requires data marshaling, including padding and endianness conversion [340]. And while
it is possible to integrate Babelfish with a query compilation engine, calling precom-
piled functionality provided by the query engine from an UDF, e.g., a specialized data
structure implementation, still presents an optimization boundary.
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5.3. Common challenges

We end this thesis by pointing out the similarities when dealing with heterogeneous
hardware and software. At first glance, the task of distributing computation on multiple
heterogeneous processors appears to be very different from integrating various software
tools in a complex data analysis ecosystem. However, in both cases we encounter sim-
ilar challenges. For example, just as we have to match query processing tasks to the
different capabilities of CPUs and GPUs (Chapter 2), we have to assign tasks to an
appropriate data processing platform in cross-platform data processing [10, 143]; often,
we use cost models to do so. We also have to be aware of the cost of data movement and
aim to reduce it, e.g., when exchanging data between different software environments
(Chapter 4), between different processors (Chapter 2), or between different systems over
the network [91]. Finally, in both cases there is a need for declarative programming
abstractions; e.g., just as OpenMP [65, 179] and OpenACC [319] allow programmers to
declaratively offload parts of a C++ program to GPUs or other accelerators, Emma [14]
allows users to write declarative data analysis programs that run on Spark [313] or
Flink [51]. Thus, techniques to address the heterogeneity of today’s computing systems,
are applicable in a wide range of research areas and engineering tasks in query processing.
In this thesis, we have developed new techniques, as well as systematically categorized
existing approaches, to let query processing system exploit this heterogeneity, in order
to extract high performance and support a diverse user base.
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A
Descriptions of surveyed

CPU/GPU query processing
systems

In this appendix, we discuss the scheduling decisions of selected heterogeneous query
processing systems, which we surveyed in Chapter 2.

GDB

GDB [116] is the first GPU-based relational query processor described in literature. It
implements relational operators on the GPU using previously described data-parallel
primitives [115, 118, 281]. In a follow-up work, these primitives were revised to support
extended precision [186]. The GPU-based operators are combined with a previously
described cache-oblivious CPU implementation [117] to create a heterogeneous query
processor.

Thus, GDB can execute the operators of a query plan on either processor. It can
also execute operators on both processors by partitioning the data. During query opti-
mization, GDB decides for each operator where to execute it and how to partition the
data based on processor-specific cost-models. For the CPU, it uses the generic database
cost model by Manegold et al. [191]. For the GPU, it uses a custom cost model which
treats primitives as black boxes and incorporates computation time, memory stalls, and
data transfer time based on microbenchmarks. GDB handles limited device memory by
partitioning the input data and out-of-core processing. It does not support overlapping
computation with transfer. Follow-up work added compression to the system [80].
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Using CPU/GPU coprocessing, the authors found a moderate speedup of up to 20% for
TPC-H queries with scale factor 1. For larger scale factors, overall system performance
was dominated by disk I/O.

Approximation and refinement

Pirk et al. propose the Approximate & Refine processing model for heterogeneous CPU/GPU
systems [247]. In this processing model, attributes are bitwise decomposed and the par-
titions are stored non-redundantly on different devices. The major bits of each value
are stored in GPU memory and the residual minor bits are stored in CPU main mem-
ory. In essence, the GPU stores a lossily compressed version of the data on which an
approximate query result can be calculated. Together with the residuals, this approxi-
mate result can be refined on the CPU to produce an exact result. Consequently each
relational operator is expressed as a pair of an approximation operator that runs on the
GPU and a refinement operator that runs on the CPU.

This processing model fits the strengths and weaknesses of a heterogeneous CPU/GPU
system with a dedicated GPU very well. On the one hand, the approximation on the
GPU effectively acts as a filter on the data that has to be processed on the CPU to
produce an exact result. It benefits from high computational power and memory band-
width of the GPU. On the other hand, the limited size of GPU memory and the slow
system bus are not bottlenecks in this approach. First, by adapting the number of bits
stored on the GPU, the approach can handle data sets that greatly exceed GPU mem-
ory. The authors show that predicate selectivity has a much bigger influence on query
performance than the number of bits stored on the GPU. Second, input data only has
to be transferred during the partitioning phase but not for each query. During query
execution, only approximate results have to be transferred over the system bus. (The
authors do not discuss updates.) Furthermore, the approximation and refinement phases
of different relational operators can be interleaved. Therefore, both phases can largely
run in parallel on the GPU and CPU.

In their evaluation, the authors achieve a speedup of 3.9× for spatial queries and
between 1.7× and 6.5× for relational queries compared to MonetDB [37]. They also
note that the CPU is often underutilized during query processing and available for other
tasks.
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CoGaDB

CoGaDB [42] is an in-memory relational database that supports multi-core CPUs, ded-
icated and integrated GPUs, and other heterogeneous processors. It also supports mul-
tiple processing models, e.g., operator-at-a-time execution [42] as well as query compi-
lation [46].

In its original design [42], CoGaDB performs static scheduling based on black-box cost
models in combination with processor utilization. The scheduler integrates its decisions
into the compilation of a physical query plan. For each operator, it determines both the
algorithm to implement the operator as well as the processor to run the algorithm. To
achieve a balanced execution, the scheduler takes into account the estimated runtime of
the operators that are already scheduled on each processor.

In a follow-up work [44], the authors implement a data-driven scheduling heuristic to
reduce data transfers. The system analyzes the workload in the background and copies
frequently accessed columns to the GPU. The scheduler subsequently schedules opera-
tions on the GPU only if all its inputs are present in GPU memory. Accordingly, these
schedules do not contain on-demand transfers of input data to the GPU. Intermediate
results are transferred only when execution moves from the GPU to the CPU.

The authors show that data-driven operator placement in combination with dynamic
scheduling gracefully handles use cases when the working set does not fit into the limited
device memory.

He et al. [120, 121]

He et al. [120, 121] describe a relational query processing system optimized for integrated
GPUs, which is based on the close cooperation of the CPU and the GPU through fine-
grained coprocessing. The authors break down complex data processing operations, e.g.,
hash joins, into primitive processing steps and measure the throughput of each processing
step on the CPU and the GPU. Based on these measurements, a cost model determines
task-specific data partitions for each processing step in order to statically schedule tasks
on the most suitable processor without leaving processing resources idle [120]. Interme-
diate results of each processing step are materialized in the processor cache if the next
step in the processing pipeline executes on a different processing core. In a follow-up
work [121], the authors also incorporate decompression and prefetching steps in order to
improve the effective memory bandwidth and reduce stall times on the GPU. Whereas
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the decompression and relational query processing steps can be scheduled on either the
CPU or the GPU, the data prefetching step always runs on the CPU.

The authors first evaluate the performance of the system when executing hash joins
on an AMD Llano processor [41]. They show that the data partition ratios for each
step vary greatly and that a workload distribution which divides the data into task-
specific partitions for each step is 28% faster than a single partitioning of the data for
all steps [120]. In a follow-up work, they evaluate the system on a subset of TPC-
H queries [323] on an AMD Kaveri processor [40], showing that decompression and
CPU-based prefetching can further improve performance by up to 40% compared to a
task-specific data partitioning alone [121].

Statistical coprocessor

Heimel et al. propose to use the GPU as a statistical coprocessor during query optimiza-
tion [122]. Specifically, the database maintains a sample of the tables on the GPU and
computes a kernel density estimator (KDE) on this sample to predict the selectivity of
a query with multiple predicates. Kiefer et al. adapt this approach to also estimate join
selectivities over multiple base tables [156].

This approach fits the strengths and weaknesses of a heterogeneous CPU/GPU system
with a dedicated GPU very well. On the one hand, the computation of the KDE model
is compute-intensive but embarrassingly parallel. By offloading this computation to the
GPU, a more involved model can be processed in a fixed time budget, which improves
the selectivity estimate and indirectly the query performance. On the other hand, the
slow system bus to the GPU is not a bottleneck in this approach. Only the query
predicates, the computed estimates, and new rows for sample maintenance have to be
transferred. Furthermore, the separation of query optimization and query processing on
distinct processors has additional useful consequences. For example, once the predictions
have been communicated to the CPU, the CPU can proceed with query processing while
the GPU performs sample maintenance operations in parallel.

Mega-KV

Mega-KV [356] is a GPU-assisted in-memory key-value store (IMKV). The authors pro-
file a state-of-the-art CPU-based IMKV and identify index operations as the main bot-
tleneck. Depending on the size of key-value pairs, these operations take up to 75% of the
total request time. Because the large index does not fit into the CPU cache, the CPU
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often stalls on random main memory accesses. However, index operations fit the GPU
architecture well. They consist of simple computations and are highly data parallel.
Therefore, the authors propose to perform these operations on the GPU.

Mega-KV stores actual key-value pairs in CPU main memory. The GPU index maps
lossily compressed key signatures to the location of the key-value pair. Depending on
the average size of a key-value pair, the limited size of GPU device memory can index
orders of magnitude more data in main memory. Storing compressed key signatures and
value locations instead of full key-value pairs also mitigates the data transfer bottleneck.
By assigning a dedicated GPU to a specific logical partition of the data, Mega-KV scales
well with additional GPUs. The CPU in Mega-KV performs preprocessing tasks, e.g.,
request parsing and key signature compression, as well as post-processing tasks, e.g., key-
value pair lookup and response construction. The system executes a pipeline in which
CPU tasks, GPU tasks, and data transfers between the two processors are efficiently
overlapped. The authors report a speedup of 1.4× to 2.8× over a state-of-the-art CPU-
based IMKV.

SABER

SABER [163] is a window-based SQL stream processor. It is written in Java but also
includes OpenCL-based operator implementations. Therefore, it can run operators either
on the CPU or on the GPU.

SABER uses a dynamic scheduling scheme that combines a global queue with a black-
box cost model based on historical performance. As the system receives input data, it
is split into fixed-size batches. Each batch is bundled with a query-specific function to
create a query task. These query tasks make up the basic scheduling unit and are placed
into a single global queue. SABER schedules each query task on the processor that
achieves the highest throughput according to its cost model. However, if this preferred
processor is busy executing other tasks, SABER schedules the query task on another
processor if it can finish the task before the originally preferred processor becomes avail-
able. This way, SABER generally schedules query tasks on the most suitable processor
but avoids underutilization.

The authors show that hybrid execution always yields better performance than ex-
ecuting queries on a single processor. However, the combined throughput is less than
the sum of the throughputs on individual processors due to contention when dispatching
tasks and assembling results. They report that SABER is up to 6× faster than Spark
streaming [346].
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DB2 with BLU acceleration

DB2 with BLU acceleration can offload sorting and grouped aggregation operations
to the GPU [201]. It schedules operations based on GPU availability and heuristics.
These heuristics take into account the number of input tuples, as well as the number of
aggregation functions and the expected number of groups for aggregation queries. For
example, if the input size is small, it is faster to execute operations on the CPU because
the data transfer dominates execution time.

The authors show that offloading sorting and aggregation to the GPU can speed up
complex queries by up to 20%. However, offloading operations to the GPU also frees
up the CPU to perform other tasks. Thus, the system can process a complex workload
consisting of multiple queries in half the time required by a CPU-only implementation.

Caldera

Caldera [19] is an HTAP system for heterogeneous CPU/GPU systems. The design of
Caldera is based on two observations. (1) The different characteristics of OLTP and
OLAP workloads are aligned with the processor properties of CPU and GPUs. (2)
Emerging heterogeneous many-core systems do not provide system-wide cache coher-
ence across all processing cores. The authors introduce the archipelago abstraction and
partition the system into a task-parallel archipelago consisting of CPU cores that exe-
cute latency-critical OLTP queries, and a data-parallel archipelago consisting of GPUs
that that execute data-intensive OLAP queries. Caldera therefore uses a static schedule
based on the nature of the two high-level tasks. (The authors also propose a hybrid
design in which CPU cores dynamically migrate between the task-parallel and the data-
parallel archipelago but they do not implement this design in the paper.) To address the
lack of cache coherence, Caldera implements a message passing protocol to ensure that
the results of transactions are visible to all cores in the task-parallel archipelago. Fur-
thermore, Caldera employs software-assisted copy-on-write to ensure that OLAP queries
operate on fresh data.

The authors evaluate Caldera using a custom workload consisting of TPC-H query 6
for OLAP and a read-modify-write query on random records for OLTP. They observe
that even though the OLAP and OLTP queries run on different processors, they in-
terfere with each other because the software-assisted copy-on-write competes for main
memory bandwidth with OLAP queries. This interference can be reduced by limiting
the percentage of hot data that is processed by OLTP queries and by reducing the fresh-
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ness of the data for OLAP queries. The authors also evaluate the impact of the data
layout on OLAP performance and compare the n-ary storage model (NSM) with the
decomposition storage model (DSM) [61] and PAX [12]. On newer NVIDIA Maxwell
GPUs [221], DSM and PAX show the same performance. However, NSM is 14× slower
when data is accessed from CPU main memory but only 2× slower when data is GPU-
resident, indicating that non-sequential reads over PCIe 3.0 are a bigger bottleneck than
non-coalesced reads in GPU device memory.

DIDO

DIDO [355] is an in-memory key-value store that is optimized for integrated GPUs. The
authors first evaluate the fixed three-stage pipeline of Mega-KV [356] which is optimized
for dedicated GPUs (see Mega-KV). They find that, depending on the workload, the
pipeline is often unbalanced and processor utilization is low.

To improve processor utilization, the coarse-grained pipeline of Mega-KV is split
into fine-grained tasks. DIDO dynamically assigns these fine-grained tasks to differ-
ent pipeline stages on the CPU or the GPU. DIDO also uses separate pipelines for
search queries, inserts and deletes because the different workload characteristics inter-
fere with each other. These assignment decisions are driven by a white-box cost model.
The computation cost is derived from the number of instructions of different tasks and
theoretical peak IPC of each processor. The memory cost is derived from the expected
number of memory and cache accesses based on the workload. To further improve pro-
cessor utilization, DIDO also lets an idle processors opportunistically steal tasks that
were assigned to the other processor.

The authors show that the dynamic pipeline is up to 4× faster than the fixed pipeline
of Mega-KV on an integrated GPU, especially for small key-value pairs. DIDO cannot
match the raw throughput of Mega-KV running on a dedicated GPU but has a better
price-performance ratio.

HEterogeneous Resource Optimizer (HERO)

The HEterogeneous Resource Optimizer (HERO) [145] is a virtualization layer to per-
form operator placement on multiple processors in databases. It is implemented as
an OpenCL driver which manages all OpenCL-capable processors in a heterogeneous
CPU/GPU system. To a database, HERO presents itself as a single virtual processor.
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However, the OpenCL code that is executed on this virtual processor is transparently
scheduled on all of the actual processors in the system.

HERO uses a hybrid scheduling scheme that combines static and dynamic schedul-
ing. It estimates operator execution time using a cost model based on historical run-
times [147]. To overcome the impact of incorrect cardinality estimates, HERO splits the
query execution plan into disjoint phases. Each phase ends with an operation which pro-
duces an intermediate result of unknown cardinality, e.g., a selection or a join. Therefore,
the placement of the operators of a phase is triggered at runtime just before the phase
is executed and the cardinalities of all inputs are known. The remaining operations of a
phase produce intermediate results with known cardinality, e.g., projections. Therefore,
the placement of all of the operators that make up a phase is decided statically before the
phase is executed. To efficiently schedule the operators of an individual phase, HERO
performs a greedy optimization with multiple restarts to avoid getting stuck in a local
optimum [146].

The authors use HERO to integrate heterogeneous scheduling in Ocelot [123] and
gpudb [343]. They show that heterogeneous execution on multiple processors is up to
2× faster than executing a query on the fastest single processor [147]. Since HERO does
not support concurrent execution on multiple processors, this speedup is based solely on
an improved operator placement.

HetExchange

HetExchange [54] is a framework to encapsulate parallelism across multiple heteroge-
neous processors in a physical relational query plan. It is modeled after the Exchange
operator [97] which encapsulates parallelism in the classic Volcano processing model. The
authors identify four interesting properties of the data flow represented by a query plan
that are related to parallel processing on heterogeneous CPU/GPU systems: the target
device, the data locality, the degree of parallelism, and the data packing. They then
introduce four corresponding operators which modify one of these properties. Handling
each property by an individual operator produces three desired effects.

First, the operators remain oblivious of the other properties. For example, the router
operator parallelizes execution across multiple processing CPU cores and GPUs but
it is oblivious to the nature of these processors. The device crossing operator moves
execution from the CPU to the GPU or back. By combining both operators, a query plan
can parallelize execution across multiple CPUs and GPUs. Similarly, by encapsulating
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data transfer into the mem-move operator, other operators remain oblivious of the data
location.

Second, traditional relational operators, e.g., joins, also remain oblivious to the hard-
ware heterogeneity. To specialize execution on CPUs and GPUs, HetExchange fuses
multiple operators into hardware-agnostic query pipelines which are then JIT-compiled
to hardware-specific code.

Third, due to their restricted nature, the HetExchange operators can be easily inte-
grated with existing query optimizers which reason over data flow properties. In the
current implementation, the heterogeneous query plan is generated statically based on
heuristics. During query execution, the router operators distribute data based on pro-
cessor utilization.

The authors evaluate HetExchange on the Star Schema Benchmark [230] with scale
factor 1000. They show that, on average, heterogeneous execution on multiple CPU
sockets and GPUs achieves 88.5% of the sum of the throughputs of CPU-only and GPU-
only execution.

Raza et al. [261]

Raza et al. [261] describe a heterogeneous HTAP system that combines an OLAP engine
based on HetExchange [54] with a custom OLTP engine called Aeolus. The design is
similar to that of Caldera [19] (see Caldera) and runs the OLAP engine exclusively on
the GPU and the OLTP engine exclusively on the CPU. The system therefore uses a
static schedule based on the nature of the two high-level tasks. In contrast to Caldera,
the system does not use copy-on-write to ensure that OLAP queries operate on fresh
data. Instead, OLTP updates are collected in a delta log and applied periodically to
OLAP data.

The authors evaluate the system with the CH-benchmark [60], which combines TPC-
C [322] as the transactional workload and TPC-H [323] as the analytical workload, with
a scale factor of 100. They observe that the segregation of the workloads on different
processors results in a 2-7% reduction of OLTP throughput. The sequential access of
OLAP queries does not starve the random accesses of the OLTP workload because the
transfer over the system bus only consumes 16% of the DRAM bandwidth in case of
PCIe 3.0 and 50% of the DRAM bandwidth in case of NVLink 2.0. The interference
of OLTP queries on the performance of the OLAP workload depends on type of system
bus and the strategy employed to overlap data transfers with computation on the GPU.
Concurrent OLTP queries result in virtually no reduction in OLAP performance when
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data is pushed to the GPU in a software-managed pipeline over PCIe 3.0. However,
when data is pulled by the GPU using zero-copy, concurrent OLTP queries reduce OLAP
performance by up to 2×. When data is transferred over NVLink 2.0, queries are up to
30% slower, regardless of the transfer strategy.

FineStream

FineStream [352] is a window-based SQL stream processor targeting integrated GPUs.
It is written in OpenCL and can run operators either on the CPU or GPU compute
units. FineStream groups operators into pipeline stages and assigns a variable number
of compute units to each stage to maximize the bandwidth utilization of CPU and GPU
compute units. This assignment is based on a black-box cost model based on histori-
cal data. Crucially, FineStream computes multiple candidate plans to group operators
and assign them to compute units. During query execution, FineStream continuously
monitors the stream ingestion rate, the size of intermediate results, and the overall per-
formance. If these metrics change, FineStream can either assign more or fewer compute
units to an operator group or switch to an entirely different plan.

The authors also reimplement SABER [163], which assigns entire queries to either a
CPU or a dedicated GPU, and compare their implementation with FineStream on an
integrated GPU. They report that a fine-grained assignment of operators to the compute
units of an integrated GPU improves throughput by 52% and latency by 36% on average.
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B
Performance penalties of

incorrectly optimized Aggregate
kernels

In Table B.1 on the following pages, we provide additional data for the experiments
performed in Section 3.4. For each GPU and group cardinality, we list the optimal
execution parameters of the Aggregate kernel. We also show the performance penalty
when executing the Aggregate kernel with these execution parameters on the other
five GPUs. This data is summarized in Figure 3.7 on page 98.
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Table B.1.: Performance penalty of Aggregate kernels optimized for a specific GPU
and group cardinality, when executed on other GPUs. WG/CU = work
groups per compute unit, WGS = work group size. For each GPU, the worst
performance penalty, which corresponds to the value shown in Figure 3.7a
on page 98, is highlighted in bold. (Table continues on next page.)

(a) Optimized for AMD A10-7850K

Groups Parallelization
strategy WG/CU WGS Threads Radeon

R9 Fury
Tesla
K40m

GeForce
GTX 980

GeForce
GTX 1080

Tesla
V100

20 WorkGroupLocal 256 128 32768 1.25 4.5 1.12 1.02 1.83
21 WorkGroupLocal 128 256 32768 1.21 2.2 1.04 1.01 1.36
22 WorkGroupLocal 256 256 65536 1.65 1.74 1.05 1.02 1.58
23 WorkGroupLocal 256 256 65536 1.93 1.63 1.04 1.01 1.95
24 WorkGroupLocal 256 256 65536 3.0 1.38 1.04 1.02 3.5
25 WorkGroupLocal 256 256 65536 3.7 1.36 1.04 1.02 3.8
26 WorkGroupLocal 256 128 32768 7.6 1.08 1.04 1.02 4.1
27 WorkGroupLocal 512 256 131072 16.9 1.40 1.45 1.83 5.1
28 WorkGroupLocal 128 256 32768 10.4 1.20 1.07 1.04 2.7
29 WorkGroupLocal 64 256 16384 8.8 1.51 1.17 1.06 1.79

210 WorkGroupLocal 32 256 8192 6.1 3.2 1.31 1.19 2.1
211 WorkGroupLocal 8 256 2048 2.8 3.5 1.58 1.46 1.59
212 Shared 128 256 32768 1.01 1.01 1.01 1.01 1.13
213 Shared 1024 256 262144 1.27 1.02 1.00 1.01 1.56
214 Shared 512 256 131072 1.08 1.00 1.01 1.01 1.26
215 Shared 64 256 16384 1.15 1.03 1.01 1.01 1.10
216 Shared 512 128 65536 1.04 1.00 1.00 1.00 1.11
217 Shared 512 128 65536 1.07 1.16 1.07 1.12 1.10
218 Shared 1024 128 131072 1.25 1.24 1.25 1.22 1.47
219 Shared 64 128 8192 1.48 1.33 1.39 1.30 1.14
220 Shared 256 128 32768 1.04 1.41 1.38 1.35 1.14
221 Shared 64 128 8192 1.01 1.37 1.39 1.36 1.21
222 Shared 1024 128 131072 1.45 1.44 1.42 1.42 1.21
223 Shared 128 128 16384 1.51 1.52 1.50 1.52 1.28
224 Shared 256 128 32768 1.09 1.16 1.41 1.52 1.28
225 Shared 1024 256 262144 1.38 1.02 1.40 1.56 1.41

(b) Optimized for AMD Radeon R9 Fury

Groups Parallelization
strategy WG/CU WGS Threads A10-7850K Tesla

K40m
GeForce

GTX 980
GeForce

GTX 1080
Tesla
V100

20 WorkGroupLocal 16 64 1024 1.23 4.7 1.07 1.30 1.06
21 WorkGroupLocal 32 256 8192 1.10 2.1 1.06 1.01 1.05
22 WorkGroupLocal 8 256 2048 1.18 1.43 1.02 1.01 1.04
23 WorkGroupLocal 8 256 2048 1.15 1.28 1.02 1.01 1.12
24 WorkGroupLocal 8 256 2048 1.13 1.00 1.02 1.02 1.15
25 WorkGroupLocal 8 256 2048 1.20 1.11 1.02 1.02 1.14
26 WorkGroupLocal 4 256 1024 1.14 1.46 1.07 1.04 1.49
27 WorkGroupLocal 4 256 1024 1.16 1.17 1.07 1.04 1.43
28 WorkGroupLocal 4 256 1024 1.55 1.28 1.07 1.05 1.43
29 WorkGroupLocal 2 256 512 1.17 2.0 1.36 1.29 1.83

210 WorkGroupLocal 2 256 512 1.18 2.1 1.38 1.34 1.71
211 WorkGroupLocal 1 256 256 1.38 2.8 2.5 2.1 2.4
212 Shared 512 32 16384 1.07 1.32 1.01 1.01 1.20
213 Shared 1024 16 16384 1.13 1.67 1.01 1.01 1.31
214 Shared 512 16 8192 1.32 1.89 1.06 1.05 1.16
215 Shared 512 16 8192 1.08 1.67 1.02 1.04 1.15
216 Shared 512 32 16384 1.07 1.44 1.02 1.04 1.13
217 Shared 256 128 32768 1.00 1.16 1.08 1.14 1.07
218 Shared 256 64 16384 1.03 1.12 1.30 1.24 1.05
219 Shared 2 64 128 1.06 1.58 1.04 1.00 1.17
220 Shared 1 128 128 1.09 1.57 1.03 1.00 1.05
221 Shared 1 128 128 1.03 1.41 1.02 1.00 1.02
222 Shared 2 64 128 1.05 1.45 1.02 1.00 1.02
223 Shared 2 64 128 1.15 1.68 1.02 1.00 1.06
224 Shared 4 32 128 1.24 1.59 1.03 1.00 1.10
225 Shared 2 64 128 1.03 1.02 1.01 1.00 1.01
226 Shared 2 64 128 1.03 1.01 1.00 1.02
227 Shared 2 64 128 1.04 1.06 1.00 1.02
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Table B.1.: Performance penalty of Aggregate kernels optimized for a specific GPU
and group cardinality, when executed on other GPUs (continued from pre-
vious page).

(c) Optimized for Nvidia Tesla K40m

Groups Parallelization
strategy WG/CU WGS Threads A10-7850K Radeon

R9 Fury
GeForce

GTX 980
GeForce

GTX 1080
Tesla
V100

20 Independent 2 1024 2048 1.92 1.71 3.3
21 Independent 2 512 1024 3.4 2.7 4.6
22 WorkGroupLocal 16 128 2048 1.16 1.07 1.02 1.03 1.01
23 WorkGroupLocal 16 128 2048 1.15 1.06 1.02 1.03 1.03
24 WorkGroupLocal 16 128 2048 1.14 1.13 1.02 1.02 1.17
25 WorkGroupLocal 16 128 2048 1.16 1.08 1.02 1.03 1.20
26 WorkGroupLocal 16 128 2048 1.13 1.31 1.03 1.02 1.18
27 WorkGroupLocal 64 256 16384 1.03 4.2 1.14 1.01 1.68
28 WorkGroupLocal 2 1024 2048 1.00 1.01 1.17
29 WorkGroupLocal 2 1024 2048 1.00 1.02 1.10

210 WorkGroupLocal 2 1024 2048 1.00 1.00 1.18
211 WorkGroupLocal 1 1024 1024 1.05 1.01 1.10
212 Shared 256 512 131072 1.01 1.00 1.17
213 Shared 256 512 131072 1.01 1.00 1.18
214 Shared 1024 128 131072 1.01 1.14 1.01 1.01 1.45
215 Shared 256 512 131072 1.00 1.00 1.17
216 Shared 1024 128 131072 1.00 1.12 1.00 1.00 1.50
217 Shared 1024 32 32768 1.09 1.08 1.01 1.03 1.20
218 Shared 512 32 16384 1.08 1.23 1.09 1.13 1.09
219 Shared 1024 16 16384 1.06 1.12 1.11 1.12 1.00
220 Shared 1024 16 16384 1.09 1.19 1.13 1.18 1.02
221 Shared 1024 16 16384 1.04 1.12 1.10 1.15 1.10
222 Shared 1024 16 16384 1.06 1.17 1.15 1.22 1.08
223 Shared 1024 16 16384 1.11 1.19 1.15 1.24 1.10
224 Shared 1024 32 32768 1.25 1.44 1.28 1.39 1.15
225 Shared 256 512 131072 1.39 1.55 1.39
226 Shared 256 1024 262144 1.39 1.71 1.54
227 Shared 1024 2 2048 2.8 1.00 1.09 1.01
228 Shared 1024 1 1024 1.13 1.16

(d) Optimized for Nvidia GeForce GTX 980

Groups Parallelization
strategy WG/CU WGS Threads A10-7850K Radeon

R9 Fury
Tesla
K40m

GeForce
GTX 1080

Tesla
V100

20 WorkGroupLocal 4 512 2048 10.5 1.02 1.00
21 WorkGroupLocal 2 1024 2048 6.7 1.03 1.03
22 WorkGroupLocal 2 1024 2048 4.2 1.02 1.04
23 WorkGroupLocal 2 1024 2048 3.2 1.02 1.16
24 WorkGroupLocal 2 1024 2048 2.1 1.02 1.19
25 WorkGroupLocal 2 1024 2048 1.90 1.02 1.21
26 WorkGroupLocal 2 1024 2048 1.48 1.02 1.17
27 WorkGroupLocal 2 1024 2048 1.07 1.02 1.15
28 WorkGroupLocal 2 1024 2048 1.00 1.01 1.17
29 WorkGroupLocal 2 1024 2048 1.00 1.02 1.10

210 WorkGroupLocal 2 1024 2048 1.00 1.00 1.18
211 WorkGroupLocal 2 1024 2048 1.03 1.00 1.00
212 Shared 256 1024 262144 1.06 1.00 1.27
213 Shared 256 1024 262144 1.06 1.01 1.27
214 Shared 256 1024 262144 1.07 1.00 1.26
215 Shared 1024 128 131072 1.06 1.14 1.00 1.00 1.51
216 Shared 1024 128 131072 1.00 1.12 1.00 1.00 1.50
217 Shared 8 128 1024 1.40 1.08 1.05 1.04 1.06
218 Shared 2 256 512 1.04 1.22 1.01 1.01 1.17
219 Shared 1 256 256 1.01 1.02 1.08 1.00 1.05
220 Shared 2 128 256 1.02 1.04 1.09 1.02 1.02
221 Shared 1 256 256 1.02 1.01 1.00 1.01 1.00
222 Shared 1 256 256 1.02 1.03 1.07 1.03 1.04
223 Shared 4 64 256 1.02 1.04 1.15 1.04 1.10
224 Shared 1 256 256 1.03 1.05 1.05 1.05 1.14
225 Shared 1 256 256 1.01 1.04 1.04 1.03 1.03
226 Shared 1024 8 8192 1.08 1.02 1.10 1.04
227 Shared 1024 2 2048 2.8 1.00 1.09 1.01
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Table B.1.: Performance penalty of Aggregate kernels optimized for a specific GPU
and group cardinality, when executed on other GPUs (continued from pre-
vious page).

(e) Optimized for Nvidia GeForce GTX 1080

Groups Parallelization
strategy WG/CU WGS Threads A10-7850K Radeon

R9 Fury
Tesla
K40m

GeForce
GTX 980

Tesla
V100

20 WorkGroupLocal 4 1024 4096 21 1.02 1.04
21 WorkGroupLocal 256 128 32768 1.01 1.31 1.58 1.03 1.44
22 WorkGroupLocal 256 128 32768 1.02 1.79 1.16 1.03 1.42
23 WorkGroupLocal 32 1024 32768 3.6 1.06 1.12
24 WorkGroupLocal 16 1024 16384 2.3 1.04 1.06
25 WorkGroupLocal 32 512 16384 1.48 1.06 1.00
26 WorkGroupLocal 64 512 32768 1.31 1.22 1.60
27 WorkGroupLocal 32 1024 32768 1.28 1.07 1.30
28 WorkGroupLocal 64 512 32768 1.14 1.20 1.69
29 WorkGroupLocal 32 1024 32768 1.22 1.08 2.4

210 WorkGroupLocal 4 1024 4096 1.03 1.03 1.00
211 WorkGroupLocal 2 1024 2048 1.03 1.00 1.00
212 Shared 512 256 131072 1.02 1.07 1.01 1.01 1.26
213 Shared 512 256 131072 1.04 1.09 1.00 1.01 1.26
214 Shared 256 1024 262144 1.07 1.00 1.26
215 Shared 1024 64 65536 1.07 1.14 1.05 1.00 1.23
216 Shared 512 256 131072 1.00 1.04 1.00 1.00 1.26
217 Shared 1 512 512 1.01 1.05 1.17
218 Shared 1 256 256 1.01 1.01 1.08 1.00 1.60
219 Shared 1 256 256 1.01 1.02 1.08 1.00 1.05
220 Shared 1 128 128 1.09 1.00 1.57 1.03 1.05
221 Shared 2 64 128 1.03 1.00 1.41 1.00 1.03
222 Shared 1 128 128 1.04 1.00 1.45 1.01 1.02
223 Shared 1 128 128 1.14 1.00 1.66 1.02 1.05
224 Shared 2 64 128 1.31 1.03 1.58 1.04 1.11
225 Shared 1 128 128 1.02 1.01 1.01 1.01 1.01
226 Shared 1 128 128 1.01 1.02 1.01 1.01
227 Shared 1 128 128 1.00 1.04 1.06 1.02
228 Shared 1 128 128 2.2 1.03

(f) Optimized for Nvidia Tesla V100

Groups Parallelization
strategy WG/CU WGS Threads A10-7850K Radeon

R9 Fury
Tesla
K40m

GeForce
GTX 980

GeForce
GTX 1080

20 WorkGroupLocal 16 128 2048 1.15 1.03 4.0 1.01 1.05
21 WorkGroupLocal 16 128 2048 1.18 1.02 1.42 1.01 1.05
22 WorkGroupLocal 64 128 8192 1.14 1.21 1.18 1.07 1.01
23 WorkGroupLocal 32 256 8192 1.06 1.06 1.42 1.06 1.01
24 WorkGroupLocal 32 512 16384 1.56 1.06 1.00
25 WorkGroupLocal 32 512 16384 1.48 1.06 1.00
26 WorkGroupLocal 8 1024 8192 1.55 1.04 1.00
27 WorkGroupLocal 8 1024 8192 1.13 1.04 1.01
28 WorkGroupLocal 8 1024 8192 1.06 1.04 1.01
29 WorkGroupLocal 8 1024 8192 1.07 1.03 1.01

210 WorkGroupLocal 4 1024 4096 1.03 1.03 1.00
211 WorkGroupLocal 2 1024 2048 1.03 1.00 1.00
212 Shared 32 1024 32768 1.06 1.01 1.01
213 Shared 32 1024 32768 1.04 1.01 1.00
214 Shared 32 1024 32768 1.06 1.02 1.01
215 Shared 32 512 16384 1.05 1.01 1.00
216 Shared 32 512 16384 1.05 1.01 1.01
217 Shared 32 1024 32768 1.17 1.08 1.12
218 Shared 32 1024 32768 1.26 1.27 1.23
219 Shared 1024 16 16384 1.06 1.12 1.00 1.11 1.12
220 Shared 1024 8 8192 1.04 1.10 1.11 1.08 1.09
221 Shared 1 256 256 1.02 1.01 1.00 1.00 1.01
222 Shared 1024 4 4096 1.06 1.04 1.35 1.08 1.08
223 Shared 1024 4 4096 1.06 1.03 1.50 1.06 1.07
224 Shared 1024 4 4096 1.04 1.07 1.29 1.04 1.06
225 Shared 1024 4 4096 1.05 1.05 1.03 1.05 1.08
226 Shared 1024 4 4096 1.04 1.01 1.01 1.08
227 Shared 1024 4 4096 1.04 1.03 1.00 1.08
228 Shared 1024 4 4096 1.32 1.07
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